DONATE

Publications

by Keyword: Engineered liposomes

Botet-Carreras A, Marimon MB, Millan-Solsona R, Aubets E, Ciudad CJ, Noé V, Montero MT, Domènech Ò, Borrell JH, (2023). On the uptake of cationic liposomes by cells: From changes in elasticity to internalization Colloids And Surfaces B-Biointerfaces 221, 112968

In this study, we assessed the capacity of a previously reported engineered liposomal formulation, which had been tested against model membranes mimicking the lipid composition of the HeLa plasma membrane, to fuse and function as a nanocarrier in cells. We used atomic force microscopy to observe physicochemical changes on the cell surface and confocal microscopy to determine how the liposomes interact with cell membranes and released their load. In addition, we performed viability assays using methotrexate as an active drug to obtain proof of concept of the formulation´s capacity to function as a drug delivery-system. The interaction of engineered liposomes with living cells corroborates the information obtained using model membranes and supports the capacity of the engineered liposomal formulation to serve as a potential nanocarrier.Copyright © 2022 Elsevier B.V. All rights reserved.

JTD Keywords: atomic force microscopy, confocal microscopy, drug delivery system, filopodia, young ?s modulus, Atomic force microscopy, Confocal microscopy, Drug delivery system, Engineered liposomes, Filopodia, Young´s modulus