DONATE

Publications

by Keyword: Epithelial-mesenchymal transition

Marhuenda, E, Villarino, A, Narciso, M, Elowsson, L, Almendros, I, Westergren-Thorsson, G, Farre, R, Gavara, N, Otero, J, (2022). Development of a physiomimetic model of acute respiratory distress syndrome by using ECM hydrogels and organ-on-a-chip devices Frontiers In Pharmacology 13, 945134

Acute Respiratory Distress Syndrome is one of the more common fatal complications in COVID-19, characterized by a highly aberrant inflammatory response. Pre-clinical models to study the effect of cell therapy and anti-inflammatory treatments have not comprehensively reproduced the disease due to its high complexity. This work presents a novel physiomimetic in vitro model for Acute Respiratory Distress Syndrome using lung extracellular matrix-derived hydrogels and organ-on-a-chip devices. Monolayres of primary alveolar epithelial cells were cultured on top of decellullarized lung hydrogels containing primary lung mesenchymal stromal cells. Then, cyclic stretch was applied to mimic breathing, and an inflammatory response was induced by using a bacteriotoxin hit. Having simulated the inflamed breathing lung environment, we assessed the effect of an anti-inflammatory drug (i.e., dexamethasone) by studying the secretion of the most relevant inflammatory cytokines. To better identify key players in our model, the impact of the individual factors (cyclic stretch, decellularized lung hydrogel scaffold, and the presence of mesenchymal stromal cells) was studied separately. Results showed that developed model presented a more reduced inflammatory response than traditional models, which is in line with what is expected from the response commonly observed in patients. Further, from the individual analysis of the different stimuli, it was observed that the use of extracellular matrix hydrogels obtained from decellularized lungs had the most significant impact on the change of the inflammatory response. The developed model then opens the door for further in vitro studies with a better-adjusted response to the inflammatory hit and more robust results in the test of different drugs or cell therapy.

JTD Keywords: Acute lung injury, Alveolar epithelial cells, Ards, Dexamethasone, Epithelial-mesenchymal transition, Extracellular matrix, Extracellular-matrix, Hydrogels, Inflammation, Lung-on-a-chip, Mesenchymal stromal cells, Oxygen, Stem-cells


Kuipers, Arthur J., Middelbeek, Jeroen, Vrenken, Kirsten, Pérez-González, Carlos, Poelmans, Geert, Klarenbeek, Jeffrey, Jalink, Kees, Trepat, Xavier, van Leeuwen, Frank N., (2018). TRPM7 controls mesenchymal features of breast cancer cells by tensional regulation of SOX4 Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1864, (7), 2409-2419

Mechanically induced signaling pathways are important drivers of tumor progression. However, if and how mechanical signals affect metastasis or therapy response remains poorly understood. We previously found that the channel-kinase TRPM7, a regulator of cellular tension implicated in mechano-sensory processes, is required for breast cancer metastasis in vitro and in vivo. Here, we show that TRPM7 contributes to maintaining a mesenchymal phenotype in breast cancer cells by tensional regulation of the EMT transcription factor SOX4. The functional consequences of SOX4 knockdown closely mirror those produced by TRPM7 knockdown. By traction force measurements, we demonstrate that TRPM7 reduces cytoskeletal tension through inhibition of myosin II activity. Moreover, we show that SOX4 expression and downstream mesenchymal markers are inversely regulated by cytoskeletal tension and matrix rigidity. Overall, our results identify SOX4 as a transcription factor that is uniquely sensitive to cellular tension and indicate that TRPM7 may contribute to breast cancer progression by tensional regulation of SOX4.

JTD Keywords: TRPM7, SOX4, Epithelial-mesenchymal transition, Cytoskeleton, Mechanotransduction