DONATE

Publications

by Keyword: Exoskeleton

Rajasekaran, Vijaykumar, Aranda, Joan, Casals, Alicia, Pons, Jose L., (2015). An adaptive control strategy for postural stability using a wearable robot Robotics and Autonomous Systems , 73, 16-23

Abstract Wearable robots are expected to expand the use of robotics in rehabilitation since they can widen the assistance application context. An important aspect of a rehabilitation therapy, in terms of lower extremity assistance, is balance control. In this article, we propose and evaluate an adaptive control strategy for robotic rehabilitation therapies to guarantee static stability using a wearable robot. Postural balance control can be implemented either acting on the hip, on the ankle joint or on both, depending on the kind of perturbation acting on the subject: internal or external. Internal perturbations can be produced by any voluntary movement of the body, such as bending the trunk. External perturbations, in the form of an impact force, are applied by the exoskeleton without any prior notice to observe the proactive response of the subject. We have used a 6 degree of freedom planar lower limb exoskeleton, H1, to perform this analysis. The developed control strategy has been designed to provide the necessary assistance, related to balance recovery and postural stability, under the “Assist-as-needed” paradigm. The interaction forces between orthosis and subject are monitored, as they play a relevant role in the definition of assistive and resistive movements to be applied to the joints. The proposed method has been tested with 5 healthy subjects in presence of internal and external disturbances. The results demonstrate that knowing the stability limit of each subject, in combination with a therapeutically selected scaling factor, the proposed adaptive control helps in providing an effective assistance in therapy. This method is efficient in handling the individual and combined effect of external perturbations acting on any joint movements.

JTD Keywords: Exoskeleton controls, Postural stability, Balance controls, Adaptive control


Rajasekaran, V., Aranda, J., Casals, A., (2015). Compliant gait assistance triggered by user intention Engineering in Medicine and Biology Society (EMBC) 37th Annual International Conference of the IEEE , IEEE (Milan, Italy) , 3885-3888

An automatic gait initialization strategy based on user intention sensing in the context of rehabilitation with a lower-limb wearable robot is proposed and evaluated. The proposed strategy involves monitoring the human-orthosis interaction torques and initial position deviation to determine the gait initiation instant and to modify orthosis operation for gait assistance, when needed. During gait, the compliant control algorithm relies on the adaptation of the joints' stiffness in function of their interaction torques and their deviation from the desired trajectories, while maintaining the dynamic stability. As a reference input, the average of a set of recorded gaits obtained from healthy subjects is used. The algorithm has been tested with five healthy subjects showing its efficient behavior in initiating the gait and maintaining the equilibrium while walking in presence of external forces. The work is performed as a preliminary study to assist patients suffering from incomplete Spinal cord injury and Stroke.

JTD Keywords: Biomedical monitoring, Exoskeletons, Joints, Knee, Legged locomotion, Trajectory, Exoskeleton, adaptive control, gait assistance, gait initiation, rehabilitation, wearable robot


Rajasekaran, V., Aranda, J., Casals, A., (2015). User intention driven adaptive gait assistance using a wearable exoskeleton Robot 2015: Second Iberian Robotics Conference (ed. Paulo Reis, L., Paulo Moreira, A., Lima, P. U., Montano, L., Muñoz-Martinez, V.), Springer International (Lausanne, Switzerland) 418, 289-301

A user intention based rehabilitation strategy for a lower-limb wearable robot is proposed and evaluated. The control strategy, which involves monitoring the human-orthosis interaction torques, determines the gait initiation instant and modifies orthosis operation for gait assistance, when needed. Orthosis operation is classified as assistive or resistive in function of its evolution with respect to a normal gait pattern. The control algorithm relies on the adaptation of the joints’ stiffness in function of their interaction torques and their deviation from the desired trajectories. An average of recorded gaits obtained from healthy subjects is used as reference input. The objective of this work is to develop a control strategy that can trigger the gait initiation from the user’s intention and maintain the dynamic stability, using an efficient real-time stiffness adaptation for multiple joints, simultaneously maintaining their synchronization. The algorithm has been tested with five healthy subjects showing its efficient behavior in initiating the gait and maintaining the equilibrium while walking in presence of external forces. The work is performed as a preliminary study to assist patients suffering from incomplete Spinal cord injury and Stroke.

JTD Keywords: Adaptive control, Exoskeleton, Gait assistance, Gait initiation, Wearable robot


Rajasekaran, V., Aranda, J., Casals, A., (2014). Handling disturbances on planned trajectories in robotic rehabilitation therapies IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer International Publishing (London, UK) 41, 85-88

Robotic rehabilitation therapies are an emerging tool in the field of Neurorehabilitation in order to achieve an effective therapeutic development in the patient. In this paper, the role of disturbances caused by muscle synergies or unpredictable effects of artificial stimulation in muscles during rehabilitation therapies is analyzed. In terms of gait assistance it is also important to maintain synchronized movements to ensure a dynamically stable gait. Although, disturbances affecting joints are corrected by a force control approach, we define two methods to ensure stability and synchronization of joint movements in the trajectory to be followed. The performance of the presented methods is evaluated in comparison with a preplanned trajectory to be followed by the patients.

JTD Keywords: Exoskeleton, Force control, Gait assistance, Neurorobot, Trajectory planning


Casals, Alicia, Fedele, Pasquale, Marek, Tadeusz, Molfino, Rezia, Muscolo, GiovanniGerardo, Recchiuto, CarmineTommaso, (2014). A robotic suit controlled by the human brain for people suffering from quadriplegia Lecture Notes in Computer Science Towards Autonomous Robotic Systems (ed. Natraj, Ashutosh, Cameron, Stephen, Melhuish, Chris, Witkowski, Mark), Springer Berlin Heidelberg , 294-295

The authors present an introductory work for the implementation of an international cooperative project aimed at designing, developing and validating a new generation of ergonomic robotic suits, wearable by the users and controlled by the human brain. The aim of the proposers is to allow the motion of people affected by paralysis or with reduced motor abilities. Therefore, the project will focus on the fusion between neuroergonomics and robotics, also by means of brain-machine interfaces. Breakthrough solutions will compose the advanced robotic suit, endowed with soft structures to increment safety and human comfort, and with an advanced real-time control that takes into account the interaction with the human body.

JTD Keywords: Neuroergonomics, Brain computer interfaces, Robotics, Robotic suits, Compliant actuators, Exoskeleton, EEG, Dynamic balance control


Amigo, L. E., Fernandez, Q., Giralt, X., Casals, A., Amat, J., (2012). Study of patient-orthosis interaction forces in rehabilitation therapies IEEE Conference Publications 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) , IEEE (Roma, Italy) , 1098-1103

The design of mechanical joints that kinematically behave as their biological counterparts is a challenge that if not addressed properly can cause inadequate forces transmission between robot and patient. This paper studies the interaction forces in rehabilitation therapies of the elbow joint. To measure the effect of orthosis-patient misalignments, a force sensor with a novel distributed architecture has been designed and used for this study. A test-bed based on an industrial robot acting as a virtual exoskeleton that emulates the action of a therapist has been developed and the interaction forces analyzed.

JTD Keywords: Force, Force measurement, Force sensors, Joints, Medical treatment, Robot sensing systems, Force sensors, Medical robotics, Patient rehabilitation, Biological counterparts, Distributed architecture, Elbow joint, Force sensor, Inadequate forces transmission, Industrial robot, Mechanical joints design, Orthosis-patient misalignments, Patient-orthosis interaction forces, Rehabilitation therapies, Robot, Test-bed, Virtual exoskeleton


Amigo, L. E., Casals, A., Amat, J., (2011). Design of a 3-DoF joint system with dynamic servo-adaptation in orthotic applications Proceedings 2011 IEEE International Conference on Robotics and Automation (ICRA) , IEEE (Shanghai, China) , 3700-3705

Most exoskeleton designs rely on structures and mechanical joints that do not guarantee the right match between the orthosis and the user. This paper proposes a virtual joint model based on three active degrees of freedom aimed to emulate a human joint. This joint is capable of performing a dynamic servo-adaptation in real-time to avoid misalignments and to provide a flexible adjustment to different users' sizes in order to avoid undesirable interaction forces.

JTD Keywords: Actuators, Elbow, Exoskeletons, Joints, Knee, Medical treatment