by Keyword: Fibrinogen/polylactic acid hybrid nanofibres

Keremidarska, M., Gugutkov, D., Altankov, G., Krasteva, N., (2015). Impact of electrospun nanofibres orientation on mesenchymal stem cell adhesion and morphology Comptes Rendus de L'Academie Bulgare des Sciences , 68, (10), 1271-1276

Electrospun nanofibrous materials mimicking the architecture of native extracellular matrix (ECM) hold great promise as scaffolds in tissue engineering. In order to optimize the properties of nanofibrous scaffolds it is important to understand the impact of fibres’ organization on cell behaviour. Herein, we investigated the effect of nanofibres (NFs) alignment on human adipose-derived mesenchymal stem cells (hAD-MSCs) adhesion and morphology. Electrospun composite fibrinogen/poly-lactic acid (FNG/PLA) NF scaffolds with same composition and comparable fibre size were fabricated into randomly oriented and aligned configuration and stem cells adhesion was characterized by the meaning of overall cell morphology, actin cytoskeleton organization and expression of molecules, involved in the development of focal adhesion complexes. We found that hAD-MSCs altered their morphology, actin cytoskeleton and cell attachment in accordance with nanofibre orientation while cell spreading, focal adhesions and expression of β1 and αNintegrin receptors were not influenced significantly by fibre orientation. These results confirmed that fibre alignment of scaffold guide cellular arrangement and could be beneficial for stem differentiation and therefore for the successful scaffolds development if its contact guidance coincided with the cell shape and cytoskeletal tension.

JTD Keywords: Electrospinning, Fibrinogen/polylactic acid hybrid nanofibres, Human adipose-derived stem cells