by Keyword: Finite element modelling
Malandrino, Andrea, Pozo, Jose Maria, Castro-Mateos, Isaac, Frangi, Alejandro F., van Rijsbergen, Marc M., Ito, Keita, Wilke, Hans-Joachim, Dao, Tien Tuan, Ho Ba Tho, Marie-Christine, Noailly, Jerome, (2015). On the relative relevance of subject-specific geometries and degeneration-specific mechanical properties for the study of cell death in human intervertebral disc models Frontiers in Bioengineering and Biotechnology 3, (Article 5), 1-15
Capturing patient- or condition-specific intervertebral disk (IVD) properties in finite element models is outmost important in order to explore how biomechanical and biophysical processes may interact in spine diseases. However, disk degenerative changes are often modeled through equations similar to those employed for healthy organs, which might not be valid. As for the simulated effects of degenerative changes, they likely depend on specific disk geometries. Accordingly, we explored the ability of continuum tissue models to simulate disk degenerative changes. We further used the results in order to assess the interplay between these simulated changes and particular IVD morphologies, in relation to disk cell nutrition, a potentially important factor in disk tissue regulation. A protocol to derive patient-specific computational models from clinical images was applied to different spine specimens. In vitro, IVD creep tests were used to optimize poro-hyperelastic input material parameters in these models, in function of the IVD degeneration grade. The use of condition-specific tissue model parameters in the specimen-specific geometrical models was validated against independent kinematic measurements in vitro. Then, models were coupled to a transport-cell viability model in order to assess the respective effects of tissue degeneration and disk geometry on cell viability. While classic disk poro-mechanical models failed in representing known degenerative changes, additional simulation of tissue damage allowed model validation and gave degeneration-dependent material properties related to osmotic pressure and water loss, and to increased fibrosis. Surprisingly, nutrition-induced cell death was independent of the grade-dependent material properties, but was favored by increased diffusion distances in large IVDs. Our results suggest that in situ geometrical screening of IVD morphology might help to anticipate particular mechanisms of disk degeneration.
JTD Keywords: Intervertebral Disc Degeneration, Finite element modelling, Lumbar spine, Poroelasticity, Damage model, Subject-specific modelling, Disc cell nutrition
Noailly, J., Malandrino, A., Galbusera, F., Jin, Zhongmin, (2014). Computational modelling of spinal implants Computational Modelling of Biomechanics and Biotribology in the Musculoskeletal System (ed. Jin, Z.), Woodhead Publishing (Cambridge, UK) Biomaterials and Tissues, 447-484
This chapter focuses on the use of the finite element method in the design and exploration of spinal implants. Following an introduction to biomechanical alterations of the spine in disease and to spine finite element modelling, focus is placed on different models developed for spine treatment simulations. Despite the hindrance of working thorough representations of in vivo situations, predictions of load transfer within both the implants and the tissues simulated allow improved interpretations of known clinical outcomes, and permit the educated design of new implants. The potential of probabilistic modelling is also discussed in relation to model validation and patient-specific analyses. Finally, the latest developments in the multiphysical modelling of intervertebral discs are presented, revealing a strong potential for the study of implant-based strategies that aim to restore the functional biophysics of the spine.
JTD Keywords: Spinal implant, Finite element modelling, Spine surgery, Spine biomechanics, Tissue mechanobiology