by Keyword: Home monitoring
Gonzalez, J -e, Rodriguez, M A, Caballero, E, Pardo, A, Marco, S, Farre, R, (2024). Open-source, low-cost App-driven Internet of Things approach to facilitate respiratory oscillometry at home and in developing countries Pulmonology 30, 180-183
[No abstract available]
JTD Keywords: Breathing, Cost, Developed country, Developing countries, Developing country, Health care facility, Home monitoring, Human, Humans, Internet, Internet of things, Letter, Lowest income group, Lung function, Lung mechanics, Lung resistance, Mathematical model, Middle income country, Mobile applications, Non invasive procedure, Open source technology, Oscillometry, Pneumotachygraphy, Telemedicine
Huerta, R., Mosqueiro, T., Fonollosa, J., Rulkov, N.F., Rodríguez-Lujan, I., (2016). Online decorrelation of humidity and temperature in chemical sensors for continuous monitoring Chemometrics and Intelligent Laboratory Systems , 157, 169-176
A method for online decorrelation of chemical sensor signals from the effects of environmental humidity and temperature variations is proposed. The goal is to improve the accuracy of electronic nose measurements for continuous monitoring by processing data from simultaneous readings of environmental humidity and temperature. The electronic nose setup built for this study included eight metal-oxide sensors, temperature and humidity sensors with a wireless communication link to external computer. This wireless electronic nose was used to monitor the air for two years in the residence of one of the authors and it collected data continuously during 537 days with a sampling rate of 1 sample per second. To estimate the effects of variations in air humidity and temperature on the chemical sensors' signals, we used a standard energy band model for an n-type metal-oxide (MOX) gas sensor. The main assumption of the model is that variations in sensor conductivity can be expressed as a nonlinear function of changes in the semiconductor energy bands in the presence of external humidity and temperature variations. Fitting this model to the collected data, we confirmed that the most statistically significant factors are humidity changes and correlated changes of temperature and humidity. This simple model achieves excellent accuracy with a coefficient of determination R2 close to 1. To show how the humidity–temperature correction model works for gas discrimination, we constructed a model for online discrimination among banana, wine and baseline response. This shows that pattern recognition algorithms improve performance and reliability by including the filtered signal of the chemical sensors.
JTD Keywords: Electronic nose, Chemical sensors, Humidity, Temperature, Decorrelation, Wireless e-nose, MOX sensors, Energy band model, Home monitoring
Morgenstern, C., Randerath, W. J., Schwaibold, M., Bolz, A., Jané, R., (2013). Feasibility of noninvasive single-channel automated differentiation of obstructive and central hypopneas with nasal airflow Respiration , 85, (4), 312-318
Background: The identification of obstructive and central hypopneas is considered challenging in clinical practice. Presently, obstructive and central hypopneas are usually not differentiated or scores lack reliability due to the technical limitations of standard polysomnography. Esophageal pressure measurement is the gold-standard for identifying these events but its invasiveness deters its usage in daily practice. Objectives: To determine the feasibility and efficacy of an automatic noninvasive analysis method for the differentiation of obstructive and central hypopneas based solely on a single-channel nasal airflow signal. The obtained results are compared with gold-standard esophageal pressure scores. Methods: A total of 41 patients underwent full night polysomnography with systematic esophageal pressure recording. Two experts in sleep medicine independently differentiated hypopneas with the gold-standard esophageal pressure signal. Features were automatically extracted from the nasal airflow signal of each annotated hypopnea to train and test the automatic analysis method. Interscorer agreement between automatic and visual scorers was measured with Cohen's kappa statistic (κ). Results: A total of 1,237 hypopneas were visually differentiated. The automatic analysis achieved an interscorer agreement of κ = 0.37 and an accuracy of 69% for scorer A, κ = 0.40 and 70% for scorer B and κ = 0.41 and 71% for the agreed scores of scorers A and B. Conclusions: The promising results obtained in this pilot study demonstrate the feasibility of noninvasive single-channel hypopnea differentiation. Further development of this method may help improving initial diagnosis with home screening devices and offering a means of therapy selection and/or control.
JTD Keywords: Central sleep hypopnea, Esophageal pressure, Home monitoring, Obstructive sleep hypopnea, Sleep disordered breathing