by Keyword: MOX gas sensor
Fonollosa, Jordi, Fernérndez, Luis, Huerta, Ramón, Gutiérrez-Gálvez, Agustín, Marco, Santiago, (2013). Temperature optimization of metal oxide sensor arrays using Mutual Information Sensors and Actuators B: Chemical Elsevier 187, (0), 331-339
The sensitivity and selectivity of metal oxide (MOX) gas sensors change significantly when the sensors operate at different temperatures. While previous investigations have presented systematic approaches to optimize the operating temperature of a single MOX sensor, in this paper we present a methodology to select the optimal operating temperature of all the MOX sensors constituent of a gas sensor array based on the multivariate response of all the sensing elements. Our approach estimates a widely used Information Theory measure, the so-called Mutual Information (MI), which quantifies the amount of information that the state of one random variable (response of the gas sensor array) can provide from the state of another random variable representing the gas quality. More specifically, our methodology builds sensor models from experimental data to solve the technical problem of populating the joint probability distribution for the MI estimation. We demonstrate the relevance of our approach by maximizing the MI and selecting the best operating temperatures of a four-sensor array sampled at 94 different temperatures to optimize the discrimination task of ethanol, acetic acid, 2-butanone, and acetone. In addition to being applicable in principle to sensor arrays of any size, our approach gives precise information on the ability of the system to discriminate odors according to the temperature of the MOX sensors, for either the optimal set of temperatures or the temperatures that may render inefficient operation of the system itself.
JTD Keywords: MOX gas sensor, Temperature optimization, Limit of detection, Mutual Information, E-nose, Sensor array, Information Theory, Chemical sensing
Fernandez, L., Gutierrez-Galvez, A., Marco, S., (2013). Multi-way analysis of diversity and redundancy factors in large MOX gas sensor data Metal Oxide-based Sensors 14th International Meeting on Chemical Sensors - IMCS 2012 , AMA Science Portal (Nuremberg, Germany) P2.07, 1279-1280
We propose the use of multi-way methods to analyze the contribution of diversity and redundancy to odor identification and concentration estimation in a large chemical sensor array. We use a chemical sensing system based on a large array of metal oxide sensors (MOX) and inspired on the diversity and redundancy of the olfactory epithelium. In order to analyze the role of diversity (different sensor type and temperature modulation) and redundancy (replicates of sensors and different load resistors) in odor quantification and discrimination tasks, we have acquired two datasets and modeled the data using multi-way techniques.
JTD Keywords: Artificial Olfaction, Large array, MOX gas sensor, Multi-way methods