by Keyword: Medical treatment
Jané, R., (2014). Engineering Sleep Disorders: From classical CPAP devices toward new intelligent adaptive ventilatory therapy IEEE Pulse , 5, (5), 29-32
Among the most common sleep disorders are those related to disruptions in airflow (apnea) or reductions in the breath amplitude (hypopnea) with or without obstruction of the upper airway (UA). One of the most important sleep disorders is obstructive sleep apnea (OSA). This sleep-disordered breathing, quantified by the apnea-hypopnea index (AHI), can produce a significant reduction of oxygen saturation and an abnormal elevation of carbon dioxide levels in the blood. Apnea and hypopnea episodes are associated with arousals and sleep fragmentation during the night and compensatory response of the autonomic nervous system.
JTD Keywords: Biomedical engineering, Biomedical measurements, Biomedical monitoring, Breathing disorders, Medical conditions, Medical treatment, Sleep, Sleep apnea
Antelis, J.M., Montesano, L., Giralt, X., Casals, A., Minguez, J., (2012). Detection of movements with attention or distraction to the motor task during robot-assisted passive movements of the upper limb Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 6410-6413
Robot-assisted rehabilitation therapies usually focus on physical aspects rather than on cognitive factors. However, cognitive aspects such as attention, motivation, and engagement play a critical role in motor learning and thus influence the long-term success of rehabilitation programs. This paper studies motor-related EEG activity during the execution of robot-assisted passive movements of the upper limb, while participants either: i) focused attention exclusively on the task; or ii) simultaneously performed another task. Six healthy subjects participated in the study and results showed lower desynchronization during passive movements with another task simultaneously being carried out (compared to passive movements with exclusive attention on the task). In addition, it was proved the feasibility to distinguish between the two conditions.
JTD Keywords: Electrodes, Electroencephalography, Induction motors, Medical treatment, Robot sensing systems, Time frequency analysis, Biomechanics, Cognition, Electroencephalography, Medical robotics, Medical signal detection, Medical signal processing, Patient rehabilitation, Attention, Cognitive aspects, Desynchronization, Engagement, Motivation, Motor learning, Motor task, Motor-related EEG activity, Physical aspects, Robot-assisted passive movement detection, Robot-assisted rehabilitation therapies, Upper limb
Amigo, L. E., Fernandez, Q., Giralt, X., Casals, A., Amat, J., (2012). Study of patient-orthosis interaction forces in rehabilitation therapies IEEE Conference Publications 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) , IEEE (Roma, Italy) , 1098-1103
The design of mechanical joints that kinematically behave as their biological counterparts is a challenge that if not addressed properly can cause inadequate forces transmission between robot and patient. This paper studies the interaction forces in rehabilitation therapies of the elbow joint. To measure the effect of orthosis-patient misalignments, a force sensor with a novel distributed architecture has been designed and used for this study. A test-bed based on an industrial robot acting as a virtual exoskeleton that emulates the action of a therapist has been developed and the interaction forces analyzed.
JTD Keywords: Force, Force measurement, Force sensors, Joints, Medical treatment, Robot sensing systems, Force sensors, Medical robotics, Patient rehabilitation, Biological counterparts, Distributed architecture, Elbow joint, Force sensor, Inadequate forces transmission, Industrial robot, Mechanical joints design, Orthosis-patient misalignments, Patient-orthosis interaction forces, Rehabilitation therapies, Robot, Test-bed, Virtual exoskeleton
Amigo, L. E., Casals, A., Amat, J., (2011). Design of a 3-DoF joint system with dynamic servo-adaptation in orthotic applications Proceedings 2011 IEEE International Conference on Robotics and Automation (ICRA) , IEEE (Shanghai, China) , 3700-3705
Most exoskeleton designs rely on structures and mechanical joints that do not guarantee the right match between the orthosis and the user. This paper proposes a virtual joint model based on three active degrees of freedom aimed to emulate a human joint. This joint is capable of performing a dynamic servo-adaptation in real-time to avoid misalignments and to provide a flexible adjustment to different users' sizes in order to avoid undesirable interaction forces.
JTD Keywords: Actuators, Elbow, Exoskeletons, Joints, Knee, Medical treatment