by Keyword: Methane

Arnau, M, Turon, P, Aleman, C, Sans, J, (2023). Hydroxyapatite-based catalysts for CO2 fixation with controlled selectivity towards C2 products. Phenomenal support or active catalyst? Journal Of Materials Chemistry a 11, 1324-1334

Permanently polarized hydroxyapatite (p-HAp) has been reported as a feasible green alternative to conventional catalysts for the selective conversion of CO2 into highly valuable chemical products. However, structural control and enhanced electrical properties achieved on p-HAp clearly contrast with other reported catalytic systems, where hydroxyapatite mainly acts as a support receiving much less attention. In this work we take advantage of the knowledge obtained on p-HAp to develop an HAp-based catalytic system composed of TiO2 nanoparticles deposited on p-HAp. It is important to stress that p-HAp is not only considered as a mechanical support but has been put in the spotlight for catalyst preparation and as an active catalytic part. Therefore, the use of p-HAp in this system has unveiled exceptional synergies with TiO2 attributed to the enhanced electrical properties of p-HAp, capable of attracting the photo-electrons generated in TiO2 nanoparticles avoiding electron-hole recombination. CO2 fixation reactions carried out under mild conditions (120 degrees C, 6 bar and under UV exposure) result in complete selectivity control of the C2 products, shifting from ethanol (201 mu mol g(catalyst)(-1)) for p-HAp alone to acetic acid (381 mu mol g(catalyst)(-1)) when TiO2 nanoparticles are loaded in the system. Considering the challenging CO2 activation energy and the high control of the selectivity achieved, we do believe that this novel approach can be considered as a starting point to explore other systems and reactions where control of the crystal structure and the enhanced electrical properties of HAp can play a crucial role in the final products, reaction conditions, yields and selectivities.

JTD Keywords: Behavior, Cobalt, Conversion, Methane, Ni, Oxidation, Performance, Reduction, Syngas production, Tio2

Trueba-Santiso, A., Fernández-Verdejo, D., Marco Rius, I., Soder-Walz, J. M., Casabella, O., Vicent, T., Marco-Urrea, E., (2020). Interspecies interaction and effect of co-contaminants in an anaerobic dichloromethane-degrading culture Chemosphere 240, 124877

An anaerobic stable mixed culture dominated by bacteria belonging to the genera Dehalobacterium, Acetobacterium, Desulfovibrio, and Wolinella was used as a model to study the microbial interactions during DCM degradation. Physiological studies indicated that DCM was degraded in this mixed culture at least in a three-step process: i) fermentation of DCM to acetate and formate, ii) formate oxidation to CO2 and H2, and iii) H2/CO2 reductive acetogenesis. The 16S rRNA gene sequencing of cultures enriched with formate or H2 showed that Desulfovibrio was the dominant population followed by Acetobacterium, but sequences representing Dehalobacterium were only present in cultures amended with DCM. Nuclear magnetic resonance analyses confirmed that acetate produced from 13C-labelled DCM was marked at the methyl ([2–13C]acetate), carboxyl ([1–13C]acetate), and both ([1,2–13C]acetate) positions, which is in accordance to acetate formed by both direct DCM fermentation and H2/CO2 acetogenesis. The inhibitory effect of ten different co-contaminants frequently detected in groundwaters on DCM degradation was also investigated. Complete inhibition of DCM degradation was observed when chloroform, perfluorooctanesulfonic acid, and diuron were added at 838, 400, and 107 μM, respectively. However, the inhibited cultures recovered the DCM degradation capability when transferred to fresh medium without co-contaminants. Findings derived from this work are of significant relevance to provide a better understanding of the synergistic interactions among bacteria to accomplish DCM degradation as well as to predict the effect of co-contaminants during anaerobic DCM bioremediation in groundwater. © 2019 Elsevier Ltd

JTD Keywords: Bioremediation, Co-contaminants, Dehalobacterium, Dichloromethane, Inhibition