DONATE

Publications

by Keyword: Mobile robot

Burgués, Javier, Hernández, Victor, Lilienthal, Achim J., Marco, Santiago, (2020). Gas distribution mapping and source localization using a 3D grid of metal oxide semiconductor sensors Sensors and Actuators B: Chemical 304, 127309

The difficulty to obtain ground truth (i.e. empirical evidence) about how a gas disperses in an environment is one of the major hurdles in the field of mobile robotic olfaction (MRO), impairing our ability to develop efficient gas source localization strategies and to validate gas distribution maps produced by autonomous mobile robots. Previous ground truth measurements of gas dispersion have been mostly based on expensive tracer optical methods or 2D chemical sensor grids deployed only at ground level. With the ever-increasing trend towards gas-sensitive aerial robots, 3D measurements of gas dispersion become necessary to characterize the environment these platforms can explore. This paper presents ten different experiments performed with a 3D grid of 27 metal oxide semiconductor (MOX) sensors to visualize the temporal evolution of gas distribution produced by an evaporating ethanol source placed at different locations in an office room, including variations in height, release rate and air flow. We also studied which features of the MOX sensor signals are optimal for predicting the source location, considering different lengths of the measurement window. We found strongly time-varying and counter-intuitive gas distribution patterns that disprove some assumptions commonly held in the MRO field, such as that heavy gases disperse along ground level. Correspondingly, ground-level gas distributions were rarely useful for localizing the gas source and elevated measurements were much more informative. We make the dataset and the code publicly available to enable the community to develop, validate, and compare new approaches related to gas sensing in complex environments.

JTD Keywords: Mobile robotic olfaction, Metal oxide gas sensors, Signal processing, Sensor networks, Gas source localization, Gas distribution mapping


Vouloutsi, Vasiliki, Mura, Anna, Tauber, F., Speck, T., Prescott, T. J., Verschure, P., (2020). Biomimetic and Biohybrid Systems 9th International Conference, Living Machines 2020, Freiburg, Germany, July 28–30, 2020, Proceedings , Springer, Cham (Lausanne, Switzerland) 12413, 1-428

This book constitutes the proceedings of the )th International Conference on Biomimetic and Biohybrid Systems, Living Machines 2020, held in Freiburg, Germany, in July 2020. Due to COVID-19 pandemic the conference was held virtually. The 32 full and 7 short papers presented in this volume were carefully reviewed and selected from 45 submissions. They deal with research on novel life-like technologies inspired by the scientific investigation of biological systems, biomimetics, and research that seeks to interface biological and artificial systems to create biohybrid systems.

JTD Keywords: Artificial intelligence, Soft robotics, Biomimetics, Insect navigation, Synthetic nervous system, Computer vision, Bio-inspired materials, Visual homing, Locomotion+, Image processing, Intelligent robots, Human-robot interaction, Machine learning, Snake robot, Mobile robots, Robotic systems, Drosophila, Robots, Sensors, Signal processing


Palacín, J., Martínez, D., Clotet, E., Pallejà, T., Burgués, J., Fonollosa, J., Pardo, A., Marco, Santiago, (2019). Application of an array of metal-oxide semiconductor gas sensors in an assistant personal robot for early gas leak detection Sensors 19, (9), 1957

This paper proposes the application of a low-cost gas sensor array in an assistant personal robot (APR) in order to extend the capabilities of the mobile robot as an early gas leak detector for safety purposes. The gas sensor array is composed of 16 low-cost metal-oxide (MOX) gas sensors, which are continuously in operation. The mobile robot was modified to keep the gas sensor array always switched on, even in the case of battery recharge. The gas sensor array provides 16 individual gas measurements and one output that is a cumulative summary of all measurements, used as an overall indicator of a gas concentration change. The results of preliminary experiments were used to train a partial least squares discriminant analysis (PLS-DA) classifier with air, ethanol, and acetone as output classes. Then, the mobile robot gas leak detection capabilities were experimentally evaluated in a public facility, by forcing the evaporation of (1) ethanol, (2) acetone, and (3) ethanol and acetone at different locations. The positive results obtained in different operation conditions over the course of one month confirmed the early detection capabilities of the proposed mobile system. For example, the APR was able to detect a gas leak produced inside a closed room from the external corridor due to small leakages under the door induced by the forced ventilation system of the building.

JTD Keywords: Metal-oxide semiconductor, Gas sensor, Gas leak detection, Assistant personal robot, Mobile robot


Martinez-Hernandez, Uriel, Vouloutsi, Vasiliki, Mura, Anna, Mangan, Michael, Asada, Minoru, Prescott, T. J., Verschure, P., (2019). Biomimetic and Biohybrid Systems 8th International Conference, Living Machines 2019, Nara, Japan, July 9–12, 2019, Proceedings , Springer, Cham (Lausanne, Switzerland) 11556, 1-384

This book constitutes the proceedings of the 8th International Conference on Biomimetic and Biohybrid Systems, Living Machines 2019, held in Nara, Japan, in July 2019. The 26 full and 16 short papers presented in this volume were carefully reviewed and selected from 45 submissions. They deal with research on novel life-like technologies inspired by the scientific investigation of biological systems, biomimetics, and research that seeks to interface biological and artificial systems to create biohybrid systems.

JTD Keywords: Artificial intelligence, Biomimetics, Computer architecture, Human robot interaction, Human-Computer Interaction (HCI), Humanoid robot, Image processing, Learning algorithms, Mobile robots, Multipurpose robots, Neural networks, Quadruped robots, Reinforcement learning, Robot learning, Robotics, Robots, Sensor, Sensors, Swarm robotics, User interfaces


Palleja, T., Balsa, R., Tresanchez, M., Moreno, J., Teixido, M., Font, D., Marco, S., Pomareda, V., Palacin, J., (2014). Corridor gas-leak localization using a mobile Robot with a photo ionization detector sensor Sensor Letters , 12, (6-7), 974-977

The use of an autonomous mobile robot to locate gas-leaks and air quality monitoring in indoor environments are promising tasks that will avoid risky human operations. However, these are challenging tasks due to the chaotic gas profile propagation originated by uncontrolled air flows. This paper proposes the localization of an acetone gas-leak in a 44 m-length indoor corridor with a mobile robot equipped with a PID sensor. This paper assesses the influence of the mobile robot velocity and the relative height of the PID sensor in the profile of the measurements. The results show weak influence of the robot velocity and strong influence of the relative height of the PID sensor. An estimate of the gas-leak location is also performed by computing the center of mass of the highest gas concentrations.

JTD Keywords: Gas source detection, LIDAR sensor, Mobile robot, PID sensor, SLAM, Acetone, Air quality, Gases, Indoor air pollution, Mobile robots, Robots, Air quality monitoring, Autonomous Mobile Robot, Gas sources, Indoor environment, Leak localization, LIDAR sensors, Profile propagation, SLAM, Ionization of gases


Martínez, Dani, Pallejà, T., Moreno, Javier, Tresanchez, Marcel, Teixidó, M., Font, Davinia, Pardo, Antonio, Marco, Santiago, Palacín, Jordi, (2014). A mobile robot agent for gas leak source detection Advances in Intelligent Systems and Computing Trends in Practical Applications of Heterogeneous Multi-Agent Systems. The PAAMS Collection (ed. Bajo Perez, Javier, Corchado Rodríguez, Juan M., Mathieu, Philippe, Campbell, Andrew, Ortega, Alfonso, Adam, Emmanuel, Navarro, Elena M., Ahrndt, Sebastian, Moreno, Maríaa N., Julián, Vicente), Springer International Publishing 293, 19-25

This paper presents an autonomous agent for gas leak source detection. The main objective of the robot is to estimate the localization of the gas leak source in an indoor environment without any human intervention. The agent implements an SLAM procedure to scan and map the indoor area. The mobile robot samples gas concentrations with a gas and a wind sensor in order to estimate the source of the gas leak. The mobile robot agent will use the information obtained from the onboard sensors in order to define an efficient scanning path. This paper describes the measurement results obtained in a long corridor with a gas leak source placed close to a wall.

JTD Keywords: Gas detection, Mobile robot agent, Laser sensor, Self-localization


Hernandez Bennetts, V. M., Lilienthal, A. J., Khaliq, A. A., Pomareda Sese, V., Trincavelli, M., (2013). Towards real-world gas distribution mapping and leak localization using a mobile robot with 3d and remote gas sensing capabilities 2013 IEEE International Conference on Robotics and Automation (ICRA) (ed. Parker, Lynne E.), IEEE (Karlsruhe, Germany) , 2335-2340

Due to its environmental, economical and safety implications, methane leak detection is a crucial task to address in the biogas production industry. In this paper, we introduce Gasbot, a robotic platform that aims to automatize methane emission monitoring in landfills and biogas production sites. The distinctive characteristic of the Gasbot platform is the use of a Tunable Laser Absorption Spectroscopy (TDLAS) sensor. This sensor provides integral concentration measurements over the path of the laser beam. Existing gas distribution mapping algorithms can only handle local measurements obtained from traditional in-situ chemical sensors. In this paper we also describe an algorithm to generate 3D methane concentration maps from integral concentration and depth measurements. The Gasbot platform has been tested in two different scenarios: an underground corridor, where a pipeline leak was simulated and in a decommissioned landfill site, where an artificial methane emission source was introduced.

JTD Keywords: Laser beams, Measurement by laser beam, Mobile robots, Robot kinematics, Robot sensing systems


Ziyatdinov, Andrey, Calvo, Jose Maria Blanco, Lechon, Miguel, Bermudez i Badia, Sergi, Verschure, Paul F. M. J., Marco, Santiago, Perera, Alexandre, (2011). Odour mapping under strong backgrounds with a metal oxide sensor array Olfaction and Electronic Nose: Proceedings of the 14th International Symposium on Olfaction and Electronic Nose AIP Conference Proceedings (ed. Perena Gouma, SUNY Stony Brook), AIP (New York City, USA) 1362, (1), 232-233

This work describes the data from navigation experiments with the mobile robot, equipped with the sensor array of three MOX gas sensors. Performed four series of measurements aim to explore the capabilities of sensor array to build the odour map with one or two odour sources in the wind tunnel space. It was demonstrated that the method based on Independent Component Analysis (ICA) is able to discriminate two odour sources, that in future can be used in the surge-and-cast robot navigation algorithm.

JTD Keywords: Mobile robots, Data acquisition, MIS devices, Chemioception