by Keyword: Motor control performance
 Hernansanz, A., Zerbato, D., Gasperotti, L., Scandola, M., Casals, A., Fiorini, P., (2012). Assessment of virtual fixtures for the development of basic skills in robotic surgery   International Journal of Computer Assisted Radiology and Surgery
 Hernansanz, A., Zerbato, D., Gasperotti, L., Scandola, M., Casals, A., Fiorini, P., (2012). Assessment of virtual fixtures for the development of basic skills in robotic surgery   International Journal of Computer Assisted Radiology and Surgery  CARS 2012 Computer Assisted Radiology and Surgery , Springer (Pisa, Italy) 7 (Supplement 1) - Surgical Modelling, Simulation and Education, S186-S188
 CARS 2012 Computer Assisted Radiology and Surgery , Springer (Pisa, Italy) 7 (Supplement 1) - Surgical Modelling, Simulation and Education, S186-S188
Teleoperation, by adequately adapting computer interfaces, can benefit from the knowledge on human factors and psychomotor models in order to improve the effectiveness and efficiency in the execution of a task. While scaling is one of the performances frequently used in teleoperation tasks that require high precision, such as surgery, this article presents a scaling method that considers the system dynamics as well. The proposed dynamic scaling factor depends on the apparent position and velocity of the robot and targets. Such scaling improves the performance of teleoperation interfaces, thereby reducing user's workload. 
JTD  Keywords: Human-robot interaction, Throughput, Scaling functions, Motor control performance
 Muñoz, L. M., Casals, A., (2012). Dynamic scaling interface for assisted teleoperation
 Muñoz, L. M., Casals, A., (2012). Dynamic scaling interface for assisted teleoperation    IEEE International Conference on Robotics and Automation (ICRA) , IEEE (Minnesota, USA) , 4288-4293
 IEEE International Conference on Robotics and Automation (ICRA) , IEEE (Minnesota, USA) , 4288-4293
Teleoperation, by adequately adapting computer interfaces, can benefit from the knowledge on human factors and psychomotor models in order to improve the effectiveness and efficiency in the execution of a task. While scaling is one of the performances frequently used in teleoperation tasks that require high precision, such as surgery, this article presents a scaling method that considers the system dynamics as well. The proposed dynamic scaling factor depends on the apparent position and velocity of the robot and targets. Such scaling improves the performance of teleoperation interfaces, thereby reducing user's workload. 
JTD  Keywords: Human-robot interaction, Motor control performance, Scaling functions, Throughput