Access IBEC scientific production portal (IBEC CRIS), for more detailed information and advanced search features.
Find here the list of all IBEC's publications by year.
by Keyword: Nanomedicines
Haro-Martínez, E, Muscolino, E, Moral, N, Duran, J, Fornaguera, C, (2025). Crossing the blood-brain barrier: nanoparticle-based strategies for neurodegenerative disease therapy Drug Delivery And Translational Research
Neurodegenerative conditions, including Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, and Huntington's disease, represent a critical medical challenge due to their increasing prevalence, severe consequences, and absence of curative treatments. Beyond the need for a deeper understanding of the fundamental mechanisms underlying neurodegeneration, the development of effective treatments is hindered by the blood-brain barrier, which poses a major obstacle to delivering therapeutic agents to the central nervous system. This review provides a comprehensive analysis of the current landscape of nanoparticle-based strategies to overcome the blood-brain barrier and enhance drug delivery for the treatment of neurodegenerative diseases. The nanocarriers reviewed in this work encompass a diverse array of nanoparticles, including polymeric nanoparticles (e.g. micelles and dendrimers), inorganic nanoparticles (e.g. superparamagentic iron oxide nanoparticles, mesoporous silica nanoparticles, gold nanoparticles, selenium and cerium oxide nanoparticles), lipid nanoparticles (e.g. liposomes, solid lipid nanoparticles, nanoemulsions), as well as quantum dots, protein nanoparticles, and hybrid nanocarriers. By examining recent advancements and highlighting future research directions, we aim to shed light on the promising role of nanomedicine in addressing the unmet therapeutic needs of these diseases.Graphical AbstractSchematic representation of the different types of nanoparticles used to tackle neurodegeneration.
JTD Keywords: Blood-brain barrier, Central nervous system deliver, Central-nervous-system, Drug-delivery, Gold nanoparticles, In-vitro, Messenger-rn, Nanocapsules promotes, Nanomedicines, Neurodegenerative diseases, Oxide nanoparticles, Polymeric nanoparticles, Receptors targeting, Solid lipid nanoparticles, Targeted delivery
Muro, Silvia, (2018). Alterations in cellular processes involving vesicular trafficking and implications in drug delivery Biomimetics 3, (3), 19
Endocytosis and vesicular trafficking are cellular processes that regulate numerous functions required to sustain life. From a translational perspective, they offer avenues to improve the access of therapeutic drugs across cellular barriers that separate body compartments and into diseased cells. However, the fact that many factors have the potential to alter these routes, impacting our ability to effectively exploit them, is often overlooked. Altered vesicular transport may arise from the molecular defects underlying the pathological syndrome which we aim to treat, the activity of the drugs being used, or side effects derived from the drug carriers employed. In addition, most cellular models currently available do not properly reflect key physiological parameters of the biological environment in the body, hindering translational progress. This article offers a critical overview of these topics, discussing current achievements, limitations and future perspectives on the use of vesicular transport for drug delivery applications.
JTD Keywords: Cellular vesicles, Vesicle fusion, Fission and intracellular trafficking, Drug delivery systems and nanomedicines, Transcytosis and endocytosis of drugs carriers, Disease effects on vesicular trafficking, Drug effects on vesicular trafficking, Role of the biological environment