by Keyword: Nanomembranes

Mohammed-Sadhakathullah, AHM, Paulo-Mirasol, S, Molina, BG, Torras, J, Armelin, E, (2024). PLA-PEG-Cholesterol biomimetic membrane for electrochemical sensing of antioxidants Electrochimica Acta 476, 143716

Polymeric membranes exhibit unique and modulate transport properties when they are properly functionalised, which make them ideal for ions transport, molecules separation and molecules interactions. The present work proposes the design and fabrication of nanostructured membranes, composed by biodegradable poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG), incorporating a lipophilic molecule (cholesterol) covalently bonded, were especially designed to provide even more application opportunities in sensors field. Electrochemical studies, by means of electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and square wave voltammetry (SWV), revealed important differences regarding the functionalised and non-functionalised PLA systems. PEGcholesterol building block units showed a clear affinity with ascorbic acid (vitamin C) and Trolox (R) (a watersoluble analogue of vitamin E), both hydrophilic in nature, with a limit of detection capacity of 8.12 mu M for AA and 3.53 mu M for AA and Trolox, respectively, in aqueous salt solution. The bioinspired polymer may be used to incorporate antioxidant property that allow the design of anti-stress biosensors, electrodes for the detection of vitamin C or vitamin E in biomedical nutrition programs, among other applications.

JTD Keywords: Antioxidant molecules, Antioxidants, Application programs, Ascorbic acid, Biomimetics, C (programming language), Capacity, Chemical detection, Cholesterol, Cyclic voltammetry, Electrochemical detection, Electrochemical impedance spectroscopy, Functional polymers, Functionalized, Lactic acid, Molecules, Nanomembranes, Poly ethylene glycols, Poly lactic acid, Poly(ethylene glycol), Poly(ethyleneglycol), Poly(lactic acid), Polyethylene glycols, Vitamin-e

García-Torres, J, Lázaro, C, Sylla, D, Lanzalaco, S, Ginebra, MP, Alemán, C, (2023). Combining 2D organic and 1D inorganic nanoblocks to develop free-standing hybrid nanomembranes for conformable biosensors Journal Of Nanostructure In Chemistry 13, 507-517

We report a simple approach to fabricate free-standing perforated 2D nanomembranes hosting well-ordered 1D metallic nanostructures to obtain hybrid materials with nanostructured surfaces for flexible electronics. Nanomembranes are formed by alternatively depositing perforated poly(lactic acid) (PLA) and poly(3,4-ethylenedioxythiophene) layers. Copper metallic nanowires (NWs) were incorporated into the nanoperforations of the top PLA layer by electrodeposition and further coated with silver via a transmetallation reaction. The combination of 2D polymeric nanomembranes and aligned 1D metallic NWs allows merging the flexibility and conformability of the ultrathin soft polymeric nanomembranes with the good electrical properties of metals for biointegrated electronic devices. Thus, we were able to tailor the nanomembrane surface chemistry as it was corroborated by SEM, EDX, XPS, CV, EIS and contact angle. The obtained hybrid nanomembranes were flexible and conformable showing sensing capacity towards H2O2 with good linear concentration range (0.35–10 mM), sensitivity (120 µA cm?2 mM?1) and limit of detection (7 ?m). Moreover, the membranes showed good stability, reproducibility and selectivity towards H2O2.

JTD Keywords: biointegrated sensors, designs, electronics, fabrication, free-standing films, h2o2, metallic nanowires, nanoparticles, nanowires, sensor, skin, Hydrogen-peroxide, Perforated nanomembranes