by Keyword: Natural gas

Udina, S., Carmona, M., Pardo, A., Calaza, C., Santander, J., Fonseca, L., Marco, S., (2012). A micromachined thermoelectric sensor for natural gas analysis: Multivariate calibration results Sensors and Actuators B: Chemical 166-167, 338-348

The potential use of a micromachined thermopile based sensor device for analyzing natural gas is explored. The sensor consists of a thermally isolated hotplate which is heated by the application of a sequence of programmed voltages to an integrated heater. Once the hotplate reaches a stationary temperature, the thermopile provides a signal proportional to the hotplate temperature. These signals are processed in order to determine different natural gas properties. Sensor response is mainly dependent on the thermal conductivity of the surrounding gas at different temperatures. Seven predicted properties (normal density, Superior Heating Value, Wobbe index and the concentrations of methane, ethane, carbon dioxide and nitrogen) are calibrated against sensor signals by using multivariate regression, in particular Partial Least Squares. Experimental data have been used for calibration and validation. Results show property prediction capability with reasonable accuracy except for prediction of carbon dioxide concentration. A detailed uncertainty analysis is provided to better understand the metrological limits of the system. These results imply for the first time the possibility of designing unprecedented low-cost natural gas analyzers. The concept may be extended to other constrained gas mixtures (e.g. of a known number of components) to enable low-cost multicomponent gas analyzers.

JTD Keywords: Gas sensor, Natural gas, MEMS, Superior Heating Value, density, PLS

Udina, S., Carmona, M., Carles, G., Santander, J., Fonseca, L., Marco, S., (2008). A micromachined thermoelectric sensor for natural gas analysis: Thermal model and experimental results Sensors and Actuators B: Chemical 134, (2), 551-558

Natural gas may show significant changes in its chemical composition depending on its origin. Typically, natural gas analysis is carried out using process gas chromatography. However, other methods based on the evaluation of physical properties have recently been reported. Thermal conductivity sensors are currently used in the analysis of binary mixtures of dissimilar gases. In contrast, natural gas is a complex mixture of mainly hydrocarbons, plus other residual gases as carbon dioxide and nitrogen. In this work, the response of a micromachined sensor integrating a heater and a thermopile is studied, regarding its potential use for natural gas analysis. A finite element thermal model of the device is described, and thermal operation simulations as well as a preliminary sensitivity analysis are reported. Experimental data has been collected and compared with simulated data, showing very good agreement. Results show that small variations in the gas mixture composition can be clearly detected. The sensor appears as a good candidate to be included in low-cost natural gas property analysis and quality control systems.

JTD Keywords: Natural gas, Thermopile, MEMS, Thermal conductivity, Modeling, FEM simulation

Udina, S., Pardo, A., Marco, S., Santander, J., Fonseca, L., (2008). Thermoelectric MEMS sensors for natural gas analysis Electronic Proceedings of the Seventh IEEE Sensors Conference 2008 Sensors, 2008 IEEE (ed. Frech, P., Siciliano, P.), IEEE (Lecce, Italy) , 1364-1367

T Multivariate data analysis techniques have been used for the first time in thermoelectric MEMS sensors in order to determine the composition of natural gas mixtures. Experimental measurements with different thermoelectric devices have been performed, the gathered data have been used to calibrate the sensor responses to four main components of natural gas: CH4, C2H6, N2 and CO2. Presence of the three first components was predicted with good accuracy while CO2 prediction was poor. Presented results indicate that thremoelectric sensors operated at different heater temperatures open the possibility of low-cost natural gas analysis.

JTD Keywords: Natural gas, Multivariate calibration, Thermal conductivity, Thermal sensor