by Keyword: Obstructive sleep apnea,probabilistic models,respiratory events,chronic respiratory disease
Romero, Daniel, Jané, Raimon, (2023). Dynamic Bayesian Model for Detecting Obstructive Respiratory Events by Using an Experimental Model Sensors 23, 3371
In this study, we propose a model-based tool for the detection of obstructive apnea episodes by using ECG features from a single lead channel. Several sequences of recurrent apnea were provoked in separate 15-min periods in anesthetized rats during an experimental model of obstructive sleep apnea (OSA). Morphology-based ECG markers and the beat-to-beat interval (RR) were assessed in each sequence. These markers were used to train dynamic Bayesian networks (DBN) with different orders and feature combinations to find a good tradeoff between network complexity and apnea-detection performance. By using a filtering approach, the resulting DBNs were used to infer the apnea probability signal for subsequent episodes in the same rat. These signals were then processed using by 15-s epochs to determine whether epochs were classified as apneic or nonapneic. Our results showed that fifth-order models provided suitable RMSE values, since higher order models become significantly more complex and present worse generalization. A global threshold of 0.2 gave the best overall performance for all combinations tested, with Acc = 81.3%, Se = 69.8% and Sp = 81.5%, using only two parameters including the RR and Ds (R-wave downslope) markers. We concluded that multivariate models using DBNs represent a powerful tool for detecting obstructive apnea episodes in short segments, which may also serve to estimate the number of total events in a given time period.
JTD Keywords: chronic respiratory diseases, obstructive sleep apnea, probabilistic models, Obstructive sleep apnea,probabilistic models,respiratory events,chronic respiratory disease, Respiratory events, Sleep-apnea syndrome,automated detection,oxygen-saturation,classification,recordings,signal