by Keyword: Optical imaging

Murar M, Albertazzi L, Pujals S, (2022). Advanced Optical Imaging-Guided Nanotheranostics toward Personalized Cancer Drug Delivery Nanomaterials 12, 399

Nanomedicine involves the use of nanotechnology for clinical applications and holds promise to improve treatments. Recent developments offer new hope for cancer detection, prevention and treatment; however, being a heterogenous disorder, cancer calls for a more targeted treatment approach. Personalized Medicine (PM) aims to revolutionize cancer therapy by matching the most effective treatment to individual patients. Nanotheranostics comprise a combination of therapy and diagnostic imaging incorporated in a nanosystem and are developed to fulfill the promise of PM by helping in the selection of treatments, the objective monitoring of response and the planning of follow-up therapy. Although well-established imaging techniques, such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Positron Emission Tomography (PET) and Single-Photon Emission Computed Tomography (SPECT), are primarily used in the development of theranostics, Optical Imaging (OI) offers some advantages, such as high sensitivity, spatial and temporal resolution and less invasiveness. Additionally, it allows for multiplexing, using multi-color imaging and DNA barcoding, which further aids in the development of personalized treatments. Recent advances have also given rise to techniques permitting better penetration, opening new doors for OI-guided nanotheranostics. In this review, we describe in detail these recent advances that may be used to design and develop efficient and specific nanotheranostics for personalized cancer drug delivery. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: 5-aminolevulinic acid, cancer, contrast agents, in-vivo, malignant gliomas, multifunctional nanoparticles, nanomedicine, optical imaging, ovarian-cancer, personalized medicine, quantum dots, silica nanoparticles, targeted probes, theranostics, Cancer, Nanomedicine, Optical imaging, Personalized medicine, Superparamagnetic iron-oxide, Theranostics

Climent, A. M., Hernandez-Romero, I., Guillem, M. S., Montserrat, N., Fernandez, M. E., Atienza, F., Fernandez-Aviles, F., (2017). High resolution microscopic optical mapping of anatomical and functional reentries in human cardiac cell cultures IEEE Conference Publications Computing in Cardiology Conference (CinC), 2016 , IEEE (Vancouver, Canada) 43, 233-236

Anatomical and/or functional reentries have been proposed as one of the main mechanism of perpetuation of cardiac fibrillation processes. However, technical limitations have difficult the characterization of those reentries and are hampering the development of effective anti-arrhythmic treatments. The goal of this study is to present a novel technology to map with high resolution the center of fibrillation drivers in order to characterize the mechanisms of reentry. Cell cultures of human cardiac-like cells differentiated from pluripotent stem cells were analyzed with a novel microscopic optical mapping system. The pharmacological response to verapamil administration of each type of reentry was analyzed. In all analyzed cell cultures, a reentry was identified as the mechanism of maintenance of the arrhythmia. Interestingly, the administration of verapamil produced opposite effects on activation rate depending on the mechanisms of reentry (i.e. anatomical or functional). Microscopic optical mapping of reentries allows the identification of perpetuation mechanisms which has been demonstrated to be linked with different pharmacological response.

JTD Keywords: Stem cells, Rotors, Microscopy, Optical filters, Calcium, Optical microscopy, Biomedical optical imaging