DONATE

Publications

by Keyword: Passive film

Caballero-Briones, F., Artes, J. M., Diez-Perez, I., Gorostiza, P., Sanz, F., (2009). Direct observation of the valence band edge by in situ ECSTM-ECTS in p-type Cu2O layers prepared by copper anodization Journal of Physical Chemistry C 113, (3), 1028-1036

Polycrystalline Cu2O layers have been selectively grown by electrochemical anodization of polycrystalline Cu electrodes in an alkaline medium (pH 12.85). Uniform layers with thicknesses around 100 nm have been obtained. Using electrochemical impedance spectroscopy, it was concluded that the Cu2O films behave as a p-type semiconductor. The Mott-Schottky plot gives a value for the flat band potential of U-FB = -255 mV vs silver/silver chloride electrode (SSC), an estimated carrier density N-A = 6.1 x 10(17) cm(-3), and the space charge layer width was calculated to be W-SCL = 9 nm at a band bending of 120 mV. The electronic structure of the Cu vertical bar Cu2O vertical bar electrolyte interface was for the first time probed by in situ electrochemical tunneling spectroscopy. The use of in situ electrochemical scanning tunneling microscopy allows us to directly observed the valence band edge and determine its position against the absolute energy scale to be E-VB = -4.9 eV. Finally, we constructed a quantitative electronic diagram of the Cu vertical bar Cu2O vertical bar electrolyte interface, where the positions of the valence and conduction band edges are depicted, as well as the edge of the previously reported electronic subband.

JTD Keywords: 0.1 m NaOH, Electrochemical tunneling spectroscopy, Cuprous-oxide films, Anodic-oxidation, Electronic-structure, Alkaline-solution, Aqueous-solution, Initial-stages, Passive film, Thin-films


Díez-Pérez, Ismael, Guell, Aleix Garcia, Sanz, Fausto, Gorostiza, Pau, (2006). Conductance maps by electrochemical tunneling spectroscopy to fingerprint the electrode electronic structure Analytical Chemistry , 78, (20), 7325-7329

We describe a methodology to perform reliable tunneling spectroscopy in electrochemical media. Sequential in situ tunneling spectra are recorded while the electrochemical potential of the electrode is scanned. Spectroscopic data are presented as conductance maps or conductograms that show the in situ electronic structure of an electrode surface while it undergoes an electrochemical reaction. The conductance map or conductogram represents the redox fingerprint of an electrode/liquid interface in a specific medium and can serve to predict its electrochemical behavior in a quantitative energy scale. The methodology is validated studying the reversible oxidation and passivity of an iron electrode in borate buffer, and we describe the main quantitative information that can be extracted concerning the semiconducting properties of the Fe passive film. This methodology is useful to study heterogeneous catalysis, electrochemical sensing and bioelectronic systems.

JTD Keywords: Passive film, Oxide-film, Stainless-steel, Iron, Microscope, Surfaces, STM, Probes


Díez-Pérez, Ismael, Vericat, Carolina, Gorostiza, Pau, Sanz, Fausto, (2006). The iron passive film breakdown in chloride media may be mediated by transient chloride-induced surface states located within the band gap Electrochemistry Communications , 8, (4), 627-632

Despite its tremendous scientific and economic impact, the mechanism that triggers metal passive film breakdown in the presence of aggressive ions remains under discussion. We have studied the iron passive film in chloride media using X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy and electrochemical tunneling spectroscopy (ECTS). Ex situ XPS reveal that the film consists exclusively of an Fe(III) oxide without chloride content. In situ ECTS has been used to build up conductance maps of the Fe electrode during its electrochemical oxidation in a borate buffer solution and its breakdown when the film is grown in the presence of chloride. This conductograms provide direct and in situ experimental evidence of chloride-induced surface states within the band gap of the oxide film (~3.3eV). These states enable new charge exchange pathways that allow hole capture at the surface of the n-type Fe(III) oxide. The blocking of VB processes that occurs in the iron passive film is no longer present in chloride media, and electrode corrosion can proceed through these new states. We propose a simple 3-step mechanism for the process, in which chloride anions form an oxidizing Fe(II) surface intermediate but do not participate directly in the reaction.

JTD Keywords: Electrochemical tunneling spectroscopy, Electronic band structure, Fe passive film, Aqueous chloride corrosion, Semiconductor decomposition, Interface states