Access IBEC scientific production portal (IBEC CRIS), for more detailed information and advanced search features.
Find here the list of all IBEC's publications by year.
by Keyword: Piezoelectric
Resina, L, Esteves, T, Ferreira, FC, Alemán, C, (2025). Recent advances in smart materials for cancer therapy Journal Of Physics D-Applied Physics 58, 463001
Smart materials have emerged as a promising innovation in cancer treatment, offering targeted, controlled, and efficient therapeutic strategies that minimize side effects and improve patient outcomes. This review explores the development and application of various smart materials in cancer therapy, such as pH-sensitive and redox-responsive hydrogels, designed to respond to the unique conditions within the tumor microenvironment (TME), and near-infrared sensitive and electroresponsive systems (including the subfield of piezoelectric materials) that respond to exogenous stimuli, also including multiresponsive materials systems. These materials enable precise drug delivery, enhance the efficacy of traditional therapies, and integrate diagnostic capabilities, fostering the advancement of theragnostic approaches. Despite significant progress, challenges persist, impairing the clinical translation of these technologies. Future perspectives emphasize the need for interdisciplinary collaboration, the development of standardized evaluation protocols, and the integration of emerging technologies, like artificial intelligence (AI), to overcome these challenges. Despite significant progress, these approaches face important limitations, including heterogeneity of TMEs, variability in stimuli-responsiveness, and concerns regarding long-term biocompatibility and large-scale production. Clinical translation also remains limited, with only a few polymeric or nanoparticle-based systems advancing to trials, while more complex multiresponsive and electroresponsive platforms remain at proof-of-concept stage. Future perspectives emphasize the need for standardized evaluation protocols, scalable manufacturing, and integration with emerging technologies such as AI to accelerate safe and effective translation into clinical practice.
JTD Keywords: Cancer, Chitosan, Doxorubicin, Drug-delivery, Electroresponsive, Hydrogel, Micelles, Nanogels, Nanoparticles, Ph, Ph-responsive delivery, Piezoelectric, Redox, Release, Smart materials, Target
Barbosa, F, Garrudo, FFF, Alberte, PS, Resina, L, Carvalho, MS, Jain, A, Marques, AC, Estrany, F, Rawson, FJ, Aléman, C, Ferreira, FC, Silva, JC, (2023). Hydroxyapatite-filled osteoinductive and piezoelectric nanofibers for bone tissue engineering Science And Technology Of Advanced Materials 24, 2242242
Osteoporotic-related fractures are among the leading causes of chronic disease morbidity in Europe and in the US. While a significant percentage of fractures can be repaired naturally, in delayed-union and non-union fractures surgical intervention is necessary for proper bone regeneration. Given the current lack of optimized clinical techniques to adequately address this issue, bone tissue engineering (BTE) strategies focusing on the development of scaffolds for temporarily replacing damaged bone and supporting its regeneration process have been gaining interest. The piezoelectric properties of bone, which have an important role in tissue homeostasis and regeneration, have been frequently neglected in the design of BTE scaffolds. Therefore, in this study, we developed novel hydroxyapatite (HAp)-filled osteoinductive and piezoelectric poly(vinylidene fluoride-co-tetrafluoroethylene) (PVDF-TrFE) nanofibers via electrospinning capable of replicating the tissue's fibrous extracellular matrix (ECM) composition and native piezoelectric properties. The developed PVDF-TrFE/HAp nanofibers had biomimetic collagen fibril-like diameters, as well as enhanced piezoelectric and surface properties, which translated into a better capacity to assist the mineralization process and cell proliferation. The biological cues provided by the HAp nanoparticles enhanced the osteogenic differentiation of seeded human mesenchymal stem/stromal cells (MSCs) as observed by the increased ALP activity, cell-secreted calcium deposition and osteogenic gene expression levels observed for the HAp-containing fibers. Overall, our findings describe the potential of combining PVDF-TrFE and HAp for developing electroactive and osteoinductive nanofibers capable of supporting bone tissue regeneration.© 2023 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis Group.
JTD Keywords: composites, electrospinning, hydroxyapatite, piezoelectricity, promote, pvdf, pvdf-trfe, removal, scaffolds, temperature, Bone tissue engineering, Electrospinning, Electrospun polycaprolactone, Hydroxyapatite, Piezoelectricity, Pvdf-trfe
