Access IBEC scientific production portal (IBEC CRIS), for more detailed information and advanced search features.
Find here the list of all IBEC's publications by year.
by Keyword: Pore complex
Rajan, SG, Roca-Cusachs, P, Niethammer, P, (2026). Mechanotransduction by nuclear envelope tension Nucleus 17, 2600901
Mechanotransduction mediated by the tension in lipid membranes is a well-established paradigm. This has been studied largely in the context of the plasma membrane, but recent work shows that it applies also to endomembranes, and specifically to the nuclear envelope. Here, we review membrane tension-mediated mechanotransduction at the nuclear envelope by focusing on its two best characterized modes of action: the cytosolic phospholipase A2 (cPLA2) pathway, and nuclear pore dilation. We discuss the mechanisms involved and their physiological implications. Finally, we discuss how nuclear envelope tension can be controlled and measured, and how its properties enable mechanosensing with different context-dependency than that of the plasma membrane. These properties apply to cPLA2 and nuclear pore complexes but potentially also to many other mechanosensors yet to be discovered.
JTD Keywords: Arachidonic-acid release, Bone-formation, C2 domain, Cytosolic phospholipase a(2), Cytosolic phospholipase a2, Force, Lipid-binding domain, Mechanobiology, Membrane, Membrane tension, Monolayer surface pressure, Nuclear deformation, Nuclear envelope, Nuclear pore complex, Nuclear transport, Nucleus, Packing, Pore complex, Tension, Yap
Andreu, I, Granero-Moya, I, Garcia-Manyes, S, Roca-Cusachs, P, (2022). Understanding the role of mechanics in nucleocytoplasmic transport Apl Bioengineering 6, 20901
Cell nuclei are submitted to mechanical forces, which in turn affect nuclear and cell functions. Recent evidence shows that a crucial mechanically regulated nuclear function is nucleocytoplasmic transport, mediated by nuclear pore complexes (NPCs). Mechanical regulation occurs at two levels: first, by force application to the nucleus, which increases NPC permeability likely through NPC stretch. Second, by the mechanical properties of the transported proteins themselves, as mechanically labile proteins translocate through NPCs faster than mechanically stiff ones. In this perspective, we discuss this evidence and the associated mechanisms by which mechanics can regulate the nucleo-cytoplasmic partitioning of proteins. Finally, we analyze how mechanical regulation of nucleocytoplasmic transport can provide a systematic approach to the study of mechanobiology and open new avenues both in fundamental and applied research. (C) 2022 Author(s).
JTD Keywords: Architecture, Association, Force, Nuclear-pore complex, Pathways, Protein import, Sun1
Andreu, I, Granero-Moya, I, Chahare, NR, Clein, K, Molina-Jordan, M, Beedle, AEM, Elosegui-Artola, A, Abenza, JF, Rossetti, L, Trepat, X, Raveh, B, Roca-Cusachs, P, (2022). Mechanical force application to the nucleus regulates nucleocytoplasmic transport Nature Cell Biology 24, 896-905
Mechanical force controls fundamental cellular processes in health and disease, and increasing evidence shows that the nucleus both experiences and senses applied forces. Such forces can lead to the nuclear translocation of proteins, but whether force controls nucleocytoplasmic transport, and how, remains unknown. Here we show that nuclear forces differentially control passive and facilitated nucleocytoplasmic transport, setting the rules for the mechanosensitivity of shuttling proteins. We demonstrate that nuclear force increases permeability across nuclear pore complexes, with a dependence on molecular weight that is stronger for passive than for facilitated diffusion. Owing to this differential effect, force leads to the translocation of cargoes into or out of the nucleus within a given range of molecular weight and affinity for nuclear transport receptors. Further, we show that the mechanosensitivity of several transcriptional regulators can be both explained by this mechanism and engineered exogenously by introducing appropriate nuclear localization signals. Our work unveils a mechanism of mechanically induced signalling, probably operating in parallel with others, with potential applicability across signalling pathways.; Andreu et al. show that force regulates nucleocytoplasmic transport by weakening the permeability barrier of nuclear pore complexes, affecting passive and facilitated diffusion in different ways.
JTD Keywords: Activation, Inhibitor, Matrix, Mechanotransduction, Nesprins, Nucleoporins, Permeability barrier, Pore complex, Proteins, Transmission