DONATE

Publications

by Keyword: Reactive oxygen and nitrogen species

Tornín J, Villasante A, Solé-Martí X, Ginebra MP, Canal C, (2021). Osteosarcoma tissue-engineered model challenges oxidative stress therapy revealing promoted cancer stem cell properties Free Radical Biology And Medicine 164, 107-118

© 2020 The Author(s) The use of oxidative stress generated by Cold Atmospheric Plasma (CAP) in oncology is being recently studied as a novel potential anti-cancer therapy. However, the beneficial effects of CAP for treating osteosarcoma have mostly been demonstrated in 2-dimensional cultures of cells, which do not mimic the complexity of the 3-dimensional (3D) bone microenvironment. In order to evaluate the effects of CAP in a relevant context of the human disease, we developed a 3D tissue-engineered model of osteosarcoma using a bone-like scaffold made of collagen type I and hydroxyapatite nanoparticles. Human osteosarcoma cells cultured within the scaffold showed a high capacity to infiltrate and proliferate and to exhibit osteomimicry in vitro. As expected, we observed significantly different functional behaviors between monolayer and 3D cultures when treated with Cold Plasma-Activated Ringer's Solution (PAR). Our data reveal that the 3D environment not only protects cells from PAR-induced lethality by scavenging and diminishing the amount of reactive oxygen and nitrogen species generated by CAP, but also favours the stemness phenotype of osteosarcoma cells. This is the first study that demonstrates the negative effect of PAR on cancer stem-like cell subpopulations in a 3D biomimetic model of cancer. These findings will allow to suitably re-focus research on plasma-based therapies in future.

JTD Keywords: 3d tumor model, cancer stem-like cells, cold atmospheric plasma, osteosarcoma, oxidative stress, plasma activated liquids, reactive oxygen and nitrogen species, 3d tumor model, Cancer stem-like cells, Cold atmospheric plasma, Osteosarcoma, Oxidative stress, Plasma activated liquids, Reactive oxygen and nitrogen species


Mateu-Sanz, M, Tornin, J, Ginebra, MP, Canal, C, (2021). Cold Atmospheric Plasma: A New Strategy Based Primarily on Oxidative Stress for Osteosarcoma Therapy Journal Of Clinical Medicine 10,

Osteosarcoma is the most common primary bone tumor, and its first line of treatment presents a high failure rate. The 5-year survival for children and teenagers with osteosarcoma is 70% (if diagnosed before it has metastasized) or 20% (if spread at the time of diagnosis), stressing the need for novel therapies. Recently, cold atmospheric plasmas (ionized gases consisting of UV-Vis radiation, electromagnetic fields and a great variety of reactive species) and plasma-treated liquids have been shown to have the potential to selectively eliminate cancer cells in different tumors through an oxidative stress-dependent mechanism. In this work, we review the current state of the art in cold plasma therapy for osteosarcoma. Specifically, we emphasize the mechanisms unveiled thus far regarding the action of plasmas on osteosarcoma. Finally, we review current and potential future approaches, emphasizing the most critical challenges for the development of osteosarcoma therapies based on this emerging technique.

JTD Keywords: cancer stem cells, cold atmospheric plasma, osteosarcoma, oxidative stress, plasma treated liquids, reactive oxygen and nitrogen species, Antineoplastic activity, Antineoplastic agent, Cancer chemotherapy, Cancer stem cell, Cancer stem cells, Cancer surgery, Cancer survival, Cell therapy, Cold atmospheric plasma, Cold atmospheric plasma therapy, Electromagnetism, Human, In vitro study, Intracellular signaling, Oncogene, Osteosarcoma, Oxidative stress, Plasma treated liquids, Reactive nitrogen species, Reactive oxygen and nitrogen species, Reactive oxygen metabolite, Review, Tumor microenvironment


Labay, C., Roldán, M., Tampieri, F., Stancampiano, A., Bocanegra, P. E., Ginebra, M. P., Canal, C., (2020). Enhanced generation of reactive species by cold plasma in gelatin solutions for selective cancer cell death ACS Applied Materials and Interfaces 12, (42), 47256-47269

Atmospheric pressure plasma jets generate reactive oxygen and nitrogen species (RONS) in liquids and biological media, which find application in the new area of plasma medicine. These plasma-treated liquids were demonstrated recently to possess selective properties on killing cancer cells and attracted attention toward new plasma-based cancer therapies. These allow for local delivery by injection in the tumor but can be quickly washed away by body fluids. By confining these RONS in a suitable biocompatible delivery system, great perspectives can be opened in the design of novel biomaterials aimed for cancer therapies. Gelatin solutions are evaluated here to store RONS generated by atmospheric pressure plasma jets, and their release properties are evaluated. The concentration of RONS was studied in 2% gelatin as a function of different plasma parameters (treatment time, nozzle distance, and gas flow) with two different plasma jets. Much higher production of reactive species (H2O2 and NO2-) was revealed in the polymer solution than in water after plasma treatment. The amount of RONS generated in gelatin is greatly improved with respect to water, with concentrations of H2O2 and NO2- between 2 and 12 times higher for the longest plasma treatments. Plasma-treated gelatin exhibited the release of these RONS to a liquid media, which induced an effective killing of bone cancer cells. Indeed, in vitro studies on the sarcoma osteogenic (SaOS-2) cell line exposed to plasma-treated gelatin led to time-dependent increasing cytotoxicity with the longer plasma treatment time of gelatin. While the SaOS-2 cell viability decreased to 12%-23% after 72 h for cells exposed to 3 min of treated gelatin, the viability of healthy cells (hMSC) was preserved (?90%), establishing the selectivity of the plasma-treated gelatin on cancer cells. This sets the basis for designing improved hydrogels with high capacity to deliver RONS locally to tumors.

JTD Keywords: Cold atmospheric plasma, Hydrogel, Osteosarcoma, Reactive oxygen and nitrogen species