by Keyword: Respiratory effort

Estrada, L., Torres, A., Sarlabous, L., Jané, R., (2017). Influence of parameter selection in fixed sample entropy of surface diaphragm electromyography for estimating respiratory activity Entropy 19, (9), 460

Fixed sample entropy (fSampEn) is a robust technique that allows the evaluation of inspiratory effort in diaphragm electromyography (EMGdi) signals, and has potential utility in sleep studies. To appropriately estimate respiratory effort, fSampEn requires the adjustment of several parameters. The aims of the present study were to evaluate the influence of the embedding dimension m, the tolerance value r, the size of the moving window, and the sampling frequency, and to establish recommendations for estimating the respiratory activity when using the fSampEn on surface EMGdi recorded for different inspiratory efforts. Values of m equal to 1 and r ranging from 0.1 to 0.64, and m equal to 2 and r ranging from 0.13 to 0.45, were found to be suitable for evaluating respiratory activity. fSampEn was less affected by window size than classical amplitude parameters. Finally, variations in sampling frequency could influence fSampEn results. In conclusion, the findings suggest the potential utility of fSampEn for estimating muscle respiratory effort in further sleep studies.

JTD Keywords: Fixed sample entropy (fSampEn), Non-invasive respiratory monitoring, Respiratory activity, Respiratory effort, Surface diaphragm electromyography

Sarlabous, L., Torres, A., Fiz, J. A., Gea, J., Marti nez-Llorens, J. M., Morera, J., Jané, R., (2010). Interpretation of the approximate entropy using fixed tolerance values as a measure of amplitude variations in biomedical signals Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 5967-5970

A new method for the quantification of amplitude variations in biomedical signals through moving approximate entropy is presented. Unlike the usual method to calculate the approximate entropy (ApEn), in which the tolerance value (r) varies based on the standard deviation of each moving window, in this work ApEn has been computed using a fixed value of r. We called this method, moving approximate entropy with fixed tolerance values: ApEn/sub f/. The obtained results indicate that ApEn/sub f/ allows determining amplitude variations in biomedical data series. These amplitude variations are better determined when intermediate values of tolerance are used. The study performed in diaphragmatic mechanomyographic signals shows that the ApEn/sub f/ curve is more correlated with the respiratory effort than the standard RMS amplitude parameter. Furthermore, it has been observed that the ApEn/sub f/ parameter is less affected by the existence of impulsive, sinusoidal, constant and Gaussian noises in comparison with the RMS amplitude parameter.

JTD Keywords: Practical, Theoretical or Mathematical/ biomechanics, Entropy, Gaussian noise, Medical signal processing, Muscle, Random processes/ approximate entropy interpretation, Fixed tolerance values, Diaphragmatic mechanomyographic signals, ApEnf curve, Respiratory effort, Gaussian noises