by Keyword: Roadmap

Blanco-Cabra, Nuria, Alcacer-Almansa, Julia, Admella, Joana, Arevalo-Jaimes, Betsy Veronica, Torrents, Eduard, (2024). Nanomedicine against biofilm infections: A roadmap of challenges and limitations Wiley Interdisciplinary Reviews-Nanomedicine And Nanobiotechnology 16, e1944

Microbial biofilms are complex three-dimensional structures where sessile microbes are embedded in a polymeric extracellular matrix. Their resistance toward the host immune system as well as to a diverse range of antimicrobial treatments poses a serious health and development threat, being in the top 10 global public health threats declared by the World Health Organization. In an effort to combat biofilm-related microbial infections, several strategies have been developed to independently eliminate biofilms or to complement conventional antibiotic therapies. However, their limitations leave room for other treatment alternatives, where the application of nanotechnology to biofilm eradication has gained significant relevance in recent years. Their small size, penetration efficiency, and the design flexibility that they present makes them a promising alternative for biofilm infection treatment, although they also present set-backs. This review aims to describe the main possibilities and limitations of nanomedicine against biofilms, while covering the main aspects of biofilm formation and study, and the current therapies for biofilm treatment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.

JTD Keywords: Anti-bacterial agents, Anti-infective agents, Antiinfective agent, Antimicrobial, Antimicrobials, Antimicrobials,bacteria,biofilm,infectious diseases,microorganism, Bacteria, Biofilm, Biofilm infections, Biofilms, Complex three dimensional structures, Diseases, Diverse range, Drug-delivery systems,in-vitro,cellular toxicity,nanoparticles,penetration,model,biocompatibility,perspectives,hyperthermia,diagnosi, Extracellular matrices, Global public health, Health risks, Infectious disease, Infectious diseases, Medical nanotechnology, Microbial biofilm, Microorganisms, Nanomedicine, Polymer, Polymers, Regulatory issues, Roadmap

Lepora, Nathan, Verschure, P., Prescott, T. J., (2018). A roadmap for Living Machines research Living machines: A handbook of research in biomimetics and biohybrid systems (ed. Prescott, T. J., Lepora, Nathan, Verschure, P.), Oxford Scholarship (Oxford, UK) , 26-50

This roadmap identifies current trends in biomimetic and biohybrid systems together with their implications for future research and innovation. Important questions include the scale at which these systems are defined, the types of biological systems addressed, the kind of principles sought, the differences between biologically based and biologically inspired approaches, the role in the understanding of living systems, relevant application domains, common benchmarks, the relation to other fields, and developments on the horizon. We interviewed and collated answers from experts who have been involved a series of events organized by the Convergent Science Network. These answers were then collated into themes of research. Overall, we see a field rapidly expanding in influence and impact. As such, this report will provide information to researchers and scientific policy makers on contemporary biomimetics and its future, together with pointers to further reading on relevant topics within this handbook.

JTD Keywords: Biomimetics, Biohybrid, Bio-inspiration, Biologically inspired, Roadmap, Living machines, policy