DONATE

Publications

by Keyword: Safety

Borrallo-Lopez, L, Guzman, L, Romero, NG, Sampietro, A, Mallo-Abreu, A, Guardia-Escote, L, Teixidó, E, Flick, B, Fernàndez-Busquets, X, Muñoz-Torrero, D, Barenys, M, (2025). Combining the zebrafish embryo developmental toxicity assay (ZEDTA) with hemoglobin staining to accelerate the research of novel antimalarial drugs for pregnant women International Journal For Parasitology-Drugs And Drug Resistance 27, 100582

Background: Malaria during pregnancy implies a high risk for the mother and the developing child. However, the therapeutic options for pregnant women have historically been very limited, especially during the first trimester of pregnancy due to potential adverse effects on embryo-fetal development. Recently, there has been great controversy regarding these potential embryo-fetal adverse effects because the results of rodent studies were not in accordance with the clinical data available, and finally the WHO has changed the recommendations for pregnant women with uncomplicated P. falciparum malaria to treatment with artemether-lumefantrine during the first trimester. The discrepancy between pre-clinical and clinical studies has been attributed to speciesdifferences in the duration of the window of susceptibility of circulating primitive erythroblasts. Methods: Here we provide a tool based on an alternative method to animal experimentation that accelerates the research of novel drugs for pregnant women. We have adapted the zebrafish embryo developmental toxicity assay to include hemoglobin staining in the embryos and two time-points of lethality and dysmorphogenesis evaluation. These two time-points were selected to include one when the development is independent of and one when the development is dependent of erythrocytes function. The method was used to test four marketed antimalarial drugs and three new antimalarial drug candidates. Results: Our combination of tests can correctly predict the teratogenic and non-teratogenic effects of several antimalarial marketed drugs (artemisinin, quinine, chloroquine, and dihydroartemisinin + desbutyl-lumefantrine). Furthermore, we have tested three new drug candidates (GS-GUAN, DONE3TCl, and YAT2150) with novel mechanisms of action, and different from those of the marketed antimalarial drugs. Conclusions: We propose a decision tree combining the results of the two time-points of evaluation together with the information on significant erythrocyte depletion. The aim of this decision tree is to identify compounds with no or lower hazard on teratogenicity or erythrocyte depletion at an early phase of the drug development process.

JTD Keywords: Alternative methods to animal experimentation, Artesunate, Culture, Dihydroartemisinin, Drug discovery, Embryotoxicity test, In-vitro, Inhibitors, Mode, Nams, Paludism, Rat, Resistance, Safety, Teratogenesis, Toxicity testin


Bach-Griera, Marc, Campo-Pérez, Víctor, Barbosa, Sandra, Traserra, Sara, Guallar-Garrido, Sandra, Moya-Andérico, Laura, Herrero-Abadía, Paula, Luquin, Marina, Rabanal, Rosa Maria, Torrents, Eduard, Julián, Esther, (2020). Mycolicibacterium brumae is a safe and non-toxic immunomodulatory agent for cancer treatment Vaccines 8, (2), 198

Intravesical Mycobacterium bovis Bacillus Calmette–Guérin (BCG) immunotherapy remains the gold-standard treatment for non-muscle-invasive bladder cancer patients, even though half of the patients develop adverse events to this therapy. On exploring BCG-alternative therapies, Mycolicibacterium brumae, a nontuberculous mycobacterium, has shown outstanding anti-tumor and immunomodulatory capabilities. As no infections due to M. brumae in humans, animals, or plants have been described, the safety and/or toxicity of this mycobacterium have not been previously addressed. In the present study, an analysis was made of M. brumae- and BCG-intravenously-infected severe combined immunodeficient (SCID) mice, M. brumae-intravesically-treated BALB/c mice, and intrahemacoelic-infected-Galleria mellonella larvae. Organs from infected mice and the hemolymph from larvae were processed to count bacterial burden. Blood samples from mice were also taken, and a wide range of hematological and biochemical parameters were analyzed. Finally, histopathological alterations in mouse tissues were evaluated. Our results demonstrate the safety and non-toxic profile of M. brumae. Differences were observed in the biochemical, hematological and histopathological analysis between M. brumae and BCG-infected mice, as well as survival curves rates and colony forming units (CFU) counts in both animal models. M. brumae constitutes a safe therapeutic biological agent, overcoming the safety and toxicity disadvantages presented by BCG in both mice and G. mellonella animal models.

JTD Keywords: Bladder cancer, Nontuberculous mycobacteria, BCG, Safety, Galleria mellonella, Mice


Berges, E., Casals, A., (2014). Considering civil liability as a safety criteria for cognitive surgical robots IFMBE Proceedings XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, Laura M.), Springer International Publishing (London, UK) 41, 113-116

One of the challenges of the robotics community is to develop robots that behave more and more autonomously. Therefore, it is necessary to establish new design criteria, as well as more complex methodologies supporting the analysis of associated risks. The procedure described in this paper includes civil liability as an additional criterion to validate the safety of a surgical robot. In order to understand the concept, a methodology is presented through the description of a simple case. This work aims to establish the basis for a further implementation.

JTD Keywords: Design methodology, Product development, Product liability, Safety, Robotic surgery, Cognitive robotics


Tort, N., Salvador, J. P., Eritja, R., Poch, M., Martinez, E., Samitier, J., Marco, M. P., (2009). Fluorescence site-encoded DNA addressable hapten microarray for anabolic androgenic steroids Trac-Trends in Analytical Chemistry , 28, (6), 718-728

We report a new strategy for immunochemical screening of small organic molecules based on the use of a hapten microarray. Using DNA-directed immobilization strategies, we have been able to convert a DNA chip into a hapten microarray by taking advantage of all the benefits of the structural and electrostatic homogeneous properties of DNA. The hapten microarray uses hapten-oligonucleotide probes instead of proteins, avoiding the limitations of preparing stochiometrically-defined protein-oligonucleotide bioconjugates. As proof of concept, we show here the development of a microarray for analysis of anabolic androgenic steroids. The microchip is able to detect several illegal substances with sufficient detectability to be used as a screening method, according to the regulations of the World Anti-Doping Agency for sport and the European Commision for food safety. The results that we show corroborate the universal possibilities of the DNA chip, and, in this case, they open the way to develop hapten microarrays for the immunochemical analysis of small organic molecules.

JTD Keywords: Anti-doping, DNA chip, DNA-directed immobilization (DDI), Fluorescence, Food safety, Hapten microarray, Immunochemical screening, Proof of concept, Small organic molecule, Steroid