DONATE

Publications

by Keyword: Saliva

Borras, N, Sanchez-Jimenez, M, Casanovas, J, Aleman, C, Perez-Madrigal, MM, (2022). Porous Poly(3,4-ethylenedioxythiophene)-Based Electrodes for Detecting Stress Biomarkers in Artificial Urine and Sweat Macromolecular Materials And Engineering 307, 2200269

When danger is perceived, the human body responds to overcome obstacles and survive a stressful situation; however, sustained levels of stress are associated with health disorders and diminished life quality. Hence, stress biomarkers are monitored to control stress quantitatively. Herein, a porous sensor (4l-COP/p) composed of poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3,4-ethylenedioxythiophene-co-N-methylpyrrole) (COP), which is prepared in a four-layered fashion to detect dopamine (DA) and serotonin (5-HT), is presented. Specifically, the detection is conducted in phosphate-buffered saline (PBS), as well as artificial urine and sweat, by applying cyclic voltammetry. The limit of detection values obtained are as low as 5.7 x 10(-6) and 1.4 x 10(-6) m for DA and 5-HT, respectively, when assessed individually in artificial urine. When mixed in PBS, 4l-COP/p detects both biomarkers with a resolution of 0.18 V and a sensitivity of 40 and 30 mu A mm(-1) for DA and 5-HT, respectively. Additionally, by theoretical calculations, the interaction pattern that each stress biomarker establishes with the PEDOT outer layer is elucidated. Whereas DA interacts with the pi-system of PEDOT, 5-HT forms specific hydrogen bonds with the conducting polymer chains. The resolution value obtained depends upon such interactions. Overall, 4l-COP/p electrodes display potential as stress sensing devices for healthcare technologies.

JTD Keywords: Artificial body fluids, Boron-doped diamond, Cortisol, Cyclic voltammetry, Dopamine, Multilayered films, Paper, Saliva, Selective detection, Sensor, Sensors, Serotonin, Serum


Rodríguez-Hernández, Ana G., Muñoz-Tabares, José, Godoy-Gallardo, Maria, Juárez, Antonio, Gil, Francisco-Javier, (2013). S. sanguinis adhesion on rough titanium surfaces: Effect of culture media Materials Science and Engineering: C 33, (2), 714-720

Bacterial colonization plays a key role in dental implant failure, because they attach directly on implant surface upon implantation. Between different types of bacteria associated with the oral environment, Streptococcus sanguinis is essential in this process since it is an early colonizer. In this work the relationship between titanium surfaces modified by shot blasting treatment and S. sanguinis adhesion; have been studied in approached human mouth environment. Bacteria pre-inoculated with routinary solution were put in contact with titanium samples, shot-blasted with alumina and silicon carbide, and adhesion results were compared with those obtained when bacteria were pre-inoculated with modified artificial saliva medium and on saliva pre-coated titanium samples. Our results showed that bacterial adhesion on titanium samples was influenced by culture conditions. When S. sanguinis was inoculated in routinary culture media, colonies forming unities per square millimeter presented an increment correlated with roughness and surface energy, but separated by the type of particle used during shot-blasting treatment; whereas in modified artificial saliva only a relationship between bacteria adhered and the increment in both roughness and surface energy were observed, regardless of the particle type. Finally, on human saliva pre-coated samples no significant differences were observed among roughness, surface energy or particle.

JTD Keywords: S. sanguinis, Bacterial adhesion, Titanium, Artificial saliva, Surface energy, Roughness


Veeregowda, D. H., van der Mei, H. C., de Vries, J., Rutland, M. W., Valle-Delgado, J. J., Sharma, P. K., Busscher, H. J., (2012). Boundary lubrication by brushed salivary conditioning films and their degree of glycosylation Clinical Oral Investigations , 16, (5), 1499-1506

Objectives: Toothbrushing, though aimed at biofilm removal, also affects the lubricative function of adsorbed salivary conditioning films (SCFs). Different modes of brushing (manual, powered, rotary-oscillatory or sonically driven) influence the SCF in different ways. Our objectives were to compare boundary lubrication of SCFs after different modes of brushing and to explain their lubrication on the basis of their roughness, dehydrated layer thickness, and degree of glycosylation. A pilot study was performed to relate in vitro lubrication with mouthfeel in human volunteers. Materials and methods: Coefficient of friction (COF) on 16-h-old SCFs after manual, rotary-oscillatory, and sonically driven brushing was measured using colloidal probe atomic force microscopy (AFM). AFM was also used to assess the roughness of SCFs prior to and after brushing. Dehydrated layer thicknesses and glycosylation of the SCFs were determined using X-ray photoelectron spectroscopy. Mouthfeel after manual and both modes of powered brushing were evaluated employing a split-mouth design. Results: Compared with unbrushed and manually or sonically driven brushed SCFs, powered rotary-oscillatory brushing leads to deglycosylation of the SCF, loss of thickness, and a rougher film. Concurrently, the COF of a powered rotary-oscillatory brushed SCF increased. Volunteers reported a slightly preferred mouthfeel after sonic brushing as compared to powered rotating-oscillating brushing. Conclusion: Deglycosylation and roughness increase the COF on SCFs. Clinical relevance: Powered rotary-oscillatory brushing can deglycosylate a SCF, leading to a rougher film surface as compared with manual and sonic brushing, decreasing the lubricative function of the SCF. This is consistent with clinical mouthfeel evaluation after different modes of brushing.

JTD Keywords: AFM, Friction, Glycosylation, Salivary conditioning film, Toothbrushing, XPS