by Keyword: Solvent-free

Bonamigo Moreira, Vitor, Rintjema, Jeroen, Bravo, Fernando, Kleij, Arjan W., Franco, Lourdes, Puiggalí, Jordi, Alemán, Carlos, Armelin, Elaine, (2022). Novel Biobased Epoxy Thermosets and Coatings from Poly(limonene carbonate) Oxide and Synthetic Hardeners Acs Sustainable Chemistry & Engineering 10, 2708-2719

In the area of coating development, it is extremely difficult to find a substitute for bisphenol A diglycidyl ether (DGEBA), the classical petroleum-based raw material used for the formulation of epoxy thermosets. This epoxy resin offers fast curing reaction with several hardeners and the best thermal and chemical resistance properties for applications in coatings and adhesive technologies. In this work, a new biobased epoxy, derived from poly(limonene carbonate) oxide (PLCO), was combined with polyetheramine and polyamineamide curing agents, offering a spectrum of thermal and mechanical properties, superior to DGEBA-based thermosets. The best formulation was found to be a combination of PLCO and a commercial curing agent (Jeffamine) in a stoichiometric 1:1 ratio. Although PLCO is a solid due to its high molecular weight, it was possible to create a two-component partially biobased epoxy paint without the need of volatile organic compounds (i.e., solvent-free formulation), intended for use in coating technology to partially replace DGEBA-based thermosets.

JTD Keywords: acid, adhesion, epoxy thermoset, mechanical properties, monomer, polycarbonates, polymers, protection, resins, solvent-free paint, thermal properties, Adhesives, Biobased epoxy, Bisphenol-a-diglycidyl ethers, Carbonation, Coating development, Coating technologies, Curing, Curing agents, Epoxy coatings, Epoxy resins, Epoxy thermoset, Epoxy thermosets, Limonene oxide, Mechanical properties, Monoterpenes, Paint, Poly(limonene carbonate) oxide, Solvent free, Solvent-free paint, Thermal properties, Thermosets, Volatile organic compounds

Maiti, B, Nandi, M, Bonardd, S, Franco, L, Puiggali, J, Enshaei, H, Aleman, C, Diaz, DD, (2021). Efficient One-Pot Preparation of Thermoresponsive Polyurethanes with Lower Critical Solution Temperatures Chempluschem 86, 1570-1576

This work reports a simple and scalable strategy to prepare a series of thermoresponsive polyurethanes synthesized via copolymerization of dicyclohexyl diisocyanate with glycerol ethoxylate in a single one-pot system. These polyurethanes exhibit lower critical solution temperatures (LCST) at 57 degrees C. The LCST of synthesized polyurethane was determined from Dynamic Scanning Calorimetry and UV-vis measurements. Both the LCST and T-g of synthesized polyurethane was tuned by varying the ratio between hard segment (dicyclohexyl diisocyanate) and soft segment (glycerol ethoxylate). Thus, T-g values could be tuned from -54.6 degrees C to -19.9 degrees C for samples with different flexibility. The swelling and deswelling studies were done at room temperature and above the LCST respectively. The results showed that the swelling ratio increases with the increase of soft segment (glycerol ethoxylate) in synthesized polyurethanes. Furthermore, the mechanical properties of the membrane were studied by universal tensile testing measurements. Specifically, stress at break values varied from 0.35 +/- 0.07 MPa to 0.91 +/- 0.15 MPa for the tested membranes, whereas elongation at break data ranged from 101.9 +/- 20.9 % to 192.4 +/- 24.4 %, and Young's modulus varied from 0.35 +/- 0.03 MPa to 1.85 +/- 0.19 MPa. Tensile strength of the films increased with the increase of the hard segment and elongation at break decreased.

JTD Keywords: copolymerization, critical solution temperatures, polyurethanes, tensile strength, Biodegradable polyurethanes, Copolymerization, Critical solution temperatures, Glycol), Polymers, Polyurethanes, Solvent-free, Tensile strength, Thermoresponsive materials