DONATE

Publications

by Keyword: Source localization

Bouras, A, Gutierrez-Galvez, A, Burgués, J, Bouzid, Y, Pardo, A, Guiatni, M, Marco, S, (2023). Concentration map reconstruction for gas source location using nano quadcopters: Metal oxide semiconductor sensor implementation and indoor experiments validation Measurement 213, 112638

Burgués, Javier, Marco, Santiago, (2020). Feature extraction for transient chemical sensor signals in response to turbulent plumes: Application to chemical source distance prediction Sensors and Actuators B: Chemical 320, 128235

This paper describes the design of a linear phase low-pass differentiator filter with a finite impulse response (FIR) for extracting transient features of gas sensor signals (the so-called “bouts”). The detection of these bouts is relevant for estimating the distance of a gas source in a turbulent plume. Our current proposal addresses the shortcomings of previous ‘bout’ estimation methods, namely: (i) they were based in non-causal digital filters precluding real time operation, (ii) they used non-linear phase filters leading to waveform distortions and (iii) the smoothing action was achieved by two filters in cascade, precluding an easy tuning of filter performance. The presented method is based on a low-pass FIR differentiator, plus proper post-processing, allowing easy algorithmic implementation for real-time robotic exploration. Linear phase filters preserve signal waveform in the bandpass region for maximum reliability concerning both ‘bout’ detection and amplitude estimation. As a case study, we apply the proposed filter to predict the source distance from recordings obtained with metal oxide (MOX) gas sensors in a wind tunnel. We first perform a joint optimization of the cut-off frequency of the filter and the bout amplitude threshold, for different wind speeds, uncovering interesting relationships between these two parameters. We demonstrate that certain combinations of parameters can reduce the prediction error to 8 cm (in a distance range of 1.45 m) improving previously reported performances in the same dataset by a factor of 2.5. These results are benchmarked against traditional source distance estimators such as the mean, variance and maximum of the response. We also study how the length of the measurement window affects the performance of different signal features, and how to select the filter parameters to make the predictive models more robust to changes in wind speed. Finally, we provide a MATLAB implementation of the bout detection algorithm and all analysis code used in this study.

JTD Keywords: Gas sensors, Differentiator, Low pass filter, Metal oxide semiconductor, MOX sensors, Signal processing, Feature extraction, Gas source localization, Robotics


Burgués, Javier, Hernández, Victor, Lilienthal, Achim J., Marco, Santiago, (2020). Gas distribution mapping and source localization using a 3D grid of metal oxide semiconductor sensors Sensors and Actuators B: Chemical 304, 127309

The difficulty to obtain ground truth (i.e. empirical evidence) about how a gas disperses in an environment is one of the major hurdles in the field of mobile robotic olfaction (MRO), impairing our ability to develop efficient gas source localization strategies and to validate gas distribution maps produced by autonomous mobile robots. Previous ground truth measurements of gas dispersion have been mostly based on expensive tracer optical methods or 2D chemical sensor grids deployed only at ground level. With the ever-increasing trend towards gas-sensitive aerial robots, 3D measurements of gas dispersion become necessary to characterize the environment these platforms can explore. This paper presents ten different experiments performed with a 3D grid of 27 metal oxide semiconductor (MOX) sensors to visualize the temporal evolution of gas distribution produced by an evaporating ethanol source placed at different locations in an office room, including variations in height, release rate and air flow. We also studied which features of the MOX sensor signals are optimal for predicting the source location, considering different lengths of the measurement window. We found strongly time-varying and counter-intuitive gas distribution patterns that disprove some assumptions commonly held in the MRO field, such as that heavy gases disperse along ground level. Correspondingly, ground-level gas distributions were rarely useful for localizing the gas source and elevated measurements were much more informative. We make the dataset and the code publicly available to enable the community to develop, validate, and compare new approaches related to gas sensing in complex environments.

JTD Keywords: Mobile robotic olfaction, Metal oxide gas sensors, Signal processing, Sensor networks, Gas source localization, Gas distribution mapping


Burgués, Javier, Hernández, Victor, Lilienthal, Achim J., Marco, Santiago, (2019). Smelling nano aerial vehicle for gas source localization and mapping Sensors 19, (3), 478

This paper describes the development and validation of the currently smallest aerial platform with olfaction capabilities. The developed Smelling Nano Aerial Vehicle (SNAV) is based on a lightweight commercial nano-quadcopter (27 g) equipped with a custom gas sensing board that can host up to two in situ metal oxide semiconductor (MOX) gas sensors. Due to its small form-factor, the SNAV is not a hazard for humans, enabling its use in public areas or inside buildings. It can autonomously carry out gas sensing missions of hazardous environments inaccessible to terrestrial robots and bigger drones, for example searching for victims and hazardous gas leaks inside pockets that form within the wreckage of collapsed buildings in the aftermath of an earthquake or explosion. The first contribution of this work is assessing the impact of the nano-propellers on the MOX sensor signals at different distances to a gas source. A second contribution is adapting the ‘bout’ detection algorithm, proposed by Schmuker et al. (2016) to extract specific features from the derivative of the MOX sensor response, for real-time operation. The third and main contribution is the experimental validation of the SNAV for gas source localization (GSL) and mapping in a large indoor environment (160 m2) with a gas source placed in challenging positions for the drone, for example hidden in the ceiling of the room or inside a power outlet box. Two GSL strategies are compared, one based on the instantaneous gas sensor response and the other one based on the bout frequency. From the measurements collected (in motion) along a predefined sweeping path we built (in less than 3 min) a 3D map of the gas distribution and identified the most likely source location. Using the bout frequency yielded on average a higher localization accuracy than using the instantaneous gas sensor response (1.38 m versus 2.05 m error), however accurate tuning of an additional parameter (the noise threshold) is required in the former case. The main conclusion of this paper is that a nano-drone has the potential to perform gas sensing tasks in complex environments.

JTD Keywords: Robotics, Signal processing, Electronics, Gas source localization, Gas distribution mapping, Gas sensors, Drone, UAV, MOX sensor, Quadcopter


Burgues, J., Marco, S., (2019). Feature extraction of gas sensor signals for gas source localization ISOEN 2019 18th International Symposium on Olfaction and Electronic Nose , IEEE (Fukuoka, Japan) , 1-3

This paper explores which signal features of a gas sensor are optimum for assessing the proximity to a gas source in an open environment. Specifically, we compare three statistical descriptors of the signal (mean, variance and maximum response) against the 'bout' frequency, a feature computed in the derivative of the response. The experimental setup includes a generator of turbulent plumes and a sensing board composed of three metal oxide (MOX) sensors of different types. The main conclusion is that the maximum response is the most robust feature across the three sensors. The 'bout' frequency can be very sensitive to an additional parameter (the noise threshold).

JTD Keywords: Feature extraction, Gas plume, Gas sensors, Gas source localization, MOX, Signal processing


Burgués, Javier, Hernandez, Victor, Lilienthal, Achim J., Marco, Santiago, (2018). 3D Gas distribution with and without artificial airflow: An experimental study with a grid of metal oxide semiconductor gas sensors Proceedings EUROSENSORS 2018 , MDPI (Graz, Austria) 2, (13), 911

Gas distribution modelling can provide potentially life-saving information when assessing the hazards of gaseous emissions and for localization of explosives, toxic or flammable chemicals. In this work, we deployed a three-dimensional (3D) grid of metal oxide semiconductor (MOX) gas sensors deployed in an office room, which allows for novel insights about the complex patterns of indoor gas dispersal. 12 independent experiments were carried out to better understand dispersion patters of a single gas source placed at different locations of the room, including variations in height, release rate and air flow profiles. This dataset is denser and richer than what is currently available, i.e., 2D datasets in wind tunnels. We make it publicly available to enable the community to develop, validate, and compare new approaches related to gas sensing in complex environments.

JTD Keywords: MOX, Metal oxide, Flow visualization, Gas sensors, Gas distribution mapping, Sensor grid, 3D, Gas source localization, Indoor