DONATE

Publications

by Keyword: Surrogate data

Espinoso, A, Andrzejak, RG, (2022). Phase irregularity: A conceptually simple and efficient approach to characterize electroencephalographic recordings from epilepsy patients Physical Review e 105, 34212

The severe neurological disorder epilepsy affects almost 1% of the world population. For patients who suffer from pharmacoresistant focal-onset epilepsy, electroencephalographic (EEG) recordings are essential for the localization of the brain area where seizures start. Apart from the visual inspection of the recordings, quantitative EEG signal analysis techniques proved to be useful for this purpose. Among other features, regularity versus irregularity and phase coherence versus phase independence allowed characterizing brain dynamics from the measured EEG signals. Can phase irregularities also characterize brain dynamics? To address this question, we use the univariate coefficient of phase velocity variation, defined as the ratio of phase velocity standard deviation and the mean phase velocity. Beyond that, as a bivariate measure we use the classical mean phase coherence to quantify the degree of phase locking. All phase-based measures are combined with surrogates to test null hypotheses about the dynamics underlying the signals. In the first part of our analysis, we use the Rössler model system to study our approach under controlled conditions. In the second part, we use the Bern-Barcelona EEG database which consists of focal and nonfocal signals extracted from seizure-free recordings. Focal signals are recorded from brain areas where the first seizure EEG signal changes can be detected, and nonfocal signals are recorded from areas that are not involved in the seizure at its onset. Our results show that focal signals have less phase variability and more phase coherence than nonfocal signals. Once combined with surrogates, the mean phase velocity proved to have the highest discriminative power between focal and nonfocal signals. In conclusion, conceptually simple and easy to compute phase-based measures can help to detect features induced by epilepsy from EEG signals. This holds not only for the classical mean phase coherence but even more so for univariate measures of phase irregularity. © 2022 American Physical Society.

JTD Keywords: brain, entropy, epileptogenic networks, functional connectivity, hilbert transform, seizure onset, surrogate data, synchronization, time-series, Biomedical signal processing, Brain areas, Brain dynamics, Dynamics, Electroencephalographic signals, Electroencephalography, Electrophysiology, Intracranial eeg signals, Localisation, Neurological disorders, Neurology, Phase based, Phase coherence, Signal detection, Simple++, Univariate, Velocity, World population


Garde, A., Sörnmo, L., Jané, R., Giraldo, B. F., (2010). Correntropy-based nonlinearity test applied to patients with chronic heart failure Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) , 2399-2402

In this study we propose the correntropy function as a discriminative measure for detecting nonlinearities in the respiratory pattern of chronic heart failure (CHF) patients with periodic or nonperiodic breathing pattern (PB or nPB, respectively). The complexity seems to be reduced in CHF patients with higher risk level. Correntropy reflects information on both, statistical distribution and temporal structure of the underlying dataset. It is a suitable measure due to its capability to preserve nonlinear information. The null hypothesis considered is that the analyzed data is generated by a Gaussian linear stochastic process. Correntropy is used in a statistical test to reject the null hypothesis through surrogate data methods. Various parameters, derived from the correntropy and correntropy spectral density (CSD) to characterize the respiratory pattern, presented no significant differences when extracted from the iteratively refined amplitude adjusted Fourier transform (IAAFT) surrogate data. The ratio between the powers in the modulation and respiratory frequency bands R was significantly different in nPB patients, but not in PB patients, which reflects a higher presence of nonlinearities in nPB patients than in PB patients.

JTD Keywords: Practical, Theoretical or Mathematical, Experimental/cardiology diseases, Fourier transforms, Medical signal processing, Pattern classification, Pneumodynamics, Spectral analysis, Statistical analysis, Stochastic processes/ correntropy based nonlinearity test, Chronic heart failure, Correntropy function, Respiratory pattern nonlinearities, CHF patients, Nonperiodic breathing pattern, Dataset statistical distribution, Dataset temporal structure, Nonlinear information, Null hypothesis, Gaussian linear stochastic process, Statistical test, Correntropy spectral density, Iteratively refined amplitude adjusted Fourier transform, Surrogate data, Periodic breathing pattern