by Keyword: Swelling

Lanzalaco, Sonia, Mingot, Júlia, Torras, Juan, Alemán, Carlos, Armelin, Elaine, (2023). Recent Advances in Poly(N-isopropylacrylamide) Hydrogels and Derivatives as Promising Materials for Biomedical and Engineering Emerging Applications Advanced Engineering Materials 25, 2201303

Galbusera, F., Schmidt, H., Noailly, J., Malandrino, A., Lacroix, D., Wilke, H.J, Shirazi-Adl, A., (2011). Comparison of four methods to simulate swelling in poroelastic finite element models of intervertebral discs Journal of the Mechanical Behavior of Biomedical Materials , 4, (7), 1234-1241

Osmotic phenomena influence the intervertebral disc biomechanics. Their simulation is challenging and can be undertaken at different levels of complexity. Four distinct approaches to simulate the osmotic behaviour of the intervertebral disc (a fixed boundary pore pressure model, a fixed osmotic pressure gradient model in the whole disc or only in the nucleus pulposus, and a swelling model with strain-dependent osmotic pressure) were analysed. Predictions were compared using a 3D poroelastic finite element model of a L4–L5 spinal unit under three different loading conditions: free swelling for 8 h and two daily loading cycles: (i) 200 N compression for 8 h followed by 500 N compression for 16 h; (ii) 500 N for 8 h followed by 1000 N for 16 h. Overall, all swelling models calculated comparable results, with differences decreasing under greater loads. Results predicted with the fixed boundary pore pressure and the fixed osmotic pressure in the whole disc models were nearly identical. The boundary pore pressure model, however, cannot simulate differential osmotic pressures in disc regions. The swelling model offered the best potential to provide more accurate results, conditional upon availability of reliable values for the required coefficients and material properties. Possible fields of application include mechanobiology investigations and crack opening and propagation. However, the other approaches are a good compromise between the ease of implementation and the reliability of results, especially when considering higher loads or when the focus is on global results such as spinal kinematics.

JTD Keywords: Intervertebral disc, Boundary pore pressure, Osmotic pressure, Swelling, Finite element, Poroelasticity

Navarro, M., Benetti, E. M., Zapotoczny, S., Planell, J. A., Vancso, G. J., (2008). Buried, covalently attached RGD peptide motifs in poly(methacrylic acid) brush layers: The effect of brush structure on cell adhesion Langmuir 24, (19), 10996-11002

Iniferter-mediated surface-initiated photopolymerization was used to graft poly(methacrylic acid) (PMAA) brush layers obtained from surface-attached iniferters in self-assembled monolayers to a gold surface. The tethered chains were subsequently functionalized with the cell-adhesive arginine-glycine-aspartic acid (RGD) motif. The modified brushes were extended by reinitiating the polymerization to obtain an additional layer of PMAA, thereby burying the peptide-functionalized segments inside the brush structure. Contact angle measurements and Fourier transform infrared (FTIR) spectroscopy were employed to characterize the wettability and the chemical properties of these platforms. Time of flight secondary ion mass spectroscopy (TOF-SIMS) measurements were performed to monitor the chemical composition of the polymer layer as a function of the distance to the gold surface and obtain information concerning the depth of the RGD motifs inside the brush structure. The brush thickness was evaluated as a function of the polymerization (i.e.. UV-irradiation) time with atomic force microscopy (AFM) and ellipsometry. Cell adhesion tests employing human osteoblasts were performed on substrates with the RGD peptides exposed at the surface as well as covered by a PMAA top brush layer. Immunofluorescence studies demonstrated a variation of the cell morphology as a function of the position of the peptide units along the grafted chains.

JTD Keywords: Ion mass-spectrometry, Transfer radical polymerization, Asymmetric diblock copolymers, Arg-gly-asp, Swelling behaviour, Endothelial-cells, Thin-films, fibronectin, Surfaces, SIMS