by Keyword: Technology transfer
Paéz Aviles, C. , Juanola-Feliu, E., Tahirbegi, I.B. , Mir, M., Gonzalez-Piñero, M., Samitier, J., (2015). Innovation and technology transfer of medical devices fosterd by cross disciplinary communities of practitioners International Journal of Innovation Management , 19, (6), 1540012
Commercialisation of emerging technological innovations such as medical devices can be a time-consuming and lengthy process resulting in a market entrance failure. To tackle this general problem, major challenges are being analysed, principally focusing on the role of Communities of Practitioners (CoPs) in the process of effective transfer of high-value emerging technologies from academia to market. Taking a case study approach, this document describes the role of a cross-disciplinary CoP in the technology transfer process within a convergence scenario. The case presented is a sensor array for ischemia detection developed by different practitioners from diverse organisations: university, research institution, hospital, and a scientific park. The analysis also involves the innovation ecosystem where all stakeholders are taken into account. This study contributes to a better understanding of the managerial implications of CoP fostering technology transfer and innovation, principally focused on the current need for new biomedical technologies and tools.
JTD Keywords: CoP, Medical devices, Innovation, Technology transfer, Ischemia
Juanola-Feliu, Esteve, Colomer-Farrarons, Jordi, Miribel-Català, Pere, González-Piñero, Manel, Samitier, Josep, (2014). Nano-enabled implantable device for glucose monitoring Implantable Bioelectronics (ed. Katz, Evgeny), Wiley-VCH Verlag GmbH & Co. KGaA (Weinheim, Germany) , 247-263
Juanola-Feliu, E., Colomer-Farrarons, J., Miribel-Català , P., Samitier, J., Valls-Pasola, J., (2012). Market challenges facing academic research in commercializing nano-enabled implantable devices for in-vivo biomedical analysis Technovation , 32, (3-4), 193-204
This article reports on the research and development of a cutting-edge biomedical device for continuous in-vivo glucose monitoring. This entirely public-funded process of technological innovation has been conducted at the University of Barcelona within a context of converging technologies involving the fields of medicine, physics, chemistry, biology, telecommunications, electronics and energy. The authors examine the value chain and the market challenges faced by in-vivo implantable biomedical devices based on nanotechnologies. In so doing, they trace the process from the point of applied research to the final integration and commercialization of the product, when the social rate of return from academic research can be estimated. Using a case-study approach, the paper also examines the high-tech activities involved in the development of this nano-enabled device and describes the technology and innovation management process within the value chain conducted in a University-Hospital-Industry-Administration-Citizens framework. Here, nanotechnology is seen to represent a new industrial revolution, boosting the biomedical devices market. Nanosensors may well provide the tools required for investigating biological processes at the cellular level in vivo when embedded into medical devices of small dimensions, using biocompatible materials, and requiring reliable and targeted biosensors, high speed data transfer, safely stored data, and even energy autonomy.
JTD Keywords: Biomedical device, Diabetes, Innovation management, Nanobiosensor, Nanotechnology, Research commercialization, Technology transfer, Academic research, Applied research, Barcelona, Biocompatible materials, Biological process, Biomedical analysis, Biomedical devices, Cellular levels, Converging technologies, Glucose monitoring, High-speed data transfer, Implantable biomedical devices, Implantable devices, In-vivo, Industrial revolutions, Innovation management, Medical Devices, Nanobiosensor, Rate of return, Research and development, Technological innovation, Value chains, Biological materials, Biomedical engineering, Biosensors, Commerce, Data transfer, Earnings, Engineering education, Glucose, Implants (surgical), Industrial research, Innovation, Medical problems, Nanosensors, Nanotechnology, Technology transfer, Equipment