DONATE

Publications

by Keyword: Three-dimensional displays

Romero, D., Lázaro, J., Jané, R., Laguna, P., Bailón, R., (2020). A quaternion-based approach to estimate respiratory rate from the vectorcardiogram Computers in Cardiology (CinC) 2020 Computing in Cardiology , IEEE (Rimini, Italy) 47, 1-4

A novel ECG-derived respiration (EDR) approach is presented to efficiently estimate the respiratory rate. It combines spatial rotations and magnitude variations of the heart's electrical vector due to respiration. Orthogonal leads X, Y and Z from 10 volunteers were analyzed during a tilt table test. The largest vector magnitude (VM) within each QRS loop was assessed, and its 3D coordinates were converted into unit quaternion qb. Angular distances between these quaternions and the axes of the reference coordinate system, θ x , θ y and θ z , were then computed as EDR signals to track their relative variations caused by respiration. The respiratory rate was estimated on the spectrum of individual EDR signals obtained from the angular distances and VM time-series, but also on EDR signals obtained by principal component analysis (PCA). Relative errors (eR) to the reference respiratory signal exhibited relatively low values. The combination of EDR signals' spectrum {θ X ,θ Y, θ Z , VM} (eR=0.63±4.15%) and individual signals derived from θ X (e R =0.46±8.22%) and PCA (eR=0.36±6.58%) achieved the overall best results. The proposed method represents a computationally efficient alternative to other EDR approaches, but its robustness should be further investigated. The method could be enhanced if combined with other features tracking morphological changes induced by respiration.

JTD Keywords: Heart, Three-dimensional displays, Quaternions, Robustness, Computational efficiency, Cardiology, Principal component analysis


Aviles, A. I., Alsaleh, S., Montseny, E., Sobrevilla, P., Casals, A., (2016). A Deep-Neuro-Fuzzy approach for estimating the interaction forces in Robotic surgery FUZZ-IEEE IEEE International Conference on Fuzzy Systems , IEEE (Vancouver, Canada ) , 1113-1119

Fuzzy theory was motivated by the need to create human-like solutions that allow representing vagueness and uncertainty that exist in the real-world. These capabilities have been recently further enhanced by deep learning since it allows converting complex relation between data into knowledge. In this paper, we present a novel Deep-Neuro-Fuzzy strategy for unsupervised estimation of the interaction forces in Robotic Assisted Minimally Invasive scenarios. In our approach, the capability of Neuro-Fuzzy systems for handling visual uncertainty, as well as the inherent imprecision of real physical problems, is reinforced by the advantages provided by Deep Learning methods. Experiments conducted in a realistic setting have demonstrated the superior performance of the proposed approach over existing alternatives. More precisely, our method increased the accuracy of the force estimation and compared favorably to existing state of the art approaches, offering a percentage of improvement that ranges from about 35% to 85%.

JTD Keywords: Estimation, Force, Machine learning, Robots, Three-dimensional displays, Uncertainty, Visualization


Aviles, A. I., Alsaleh, S., Sobrevilla, P., Casals, A., (2015). Sensorless force estimation using a neuro-vision-based approach for robotic-assisted surgery NER 2015 7th International IEEE/EMBS Conference on Neural Engineering , IEEE (Montpellier, France) , 86-89

This paper addresses the issue of lack of force feedback in robotic-assisted minimally invasive surgeries. Force is an important measure for surgeons in order to prevent intra-operative complications and tissue damage. Thus, an innovative neuro-vision based force estimation approach is proposed. Tissue surface displacement is first measured via minimization of an energy functional. A neuro approach is then used to establish a geometric-visual relation and estimate the applied force. The proposed approach eliminates the need of add-on sensors, carrying out biocompatibility studies and is applicable to tissues of any shape. Moreover, we provided an improvement from 15.14% to 56.16% over other approaches which demonstrate the potential of our proposal.

JTD Keywords: Estimation, Force, Minimally invasive surgery, Robot sensing systems, Three-dimensional displays