DONATE

Publications

by Keyword: Variant effect

Claussnitzer, Melina, Parikh, Victoria N, Wagner, Alex H, Arbesfeld, Jeremy A, Bult, Carol J, Firth, Helen V, Muffley, Lara A, Ba, Alex N Nguyen, Riehle, Kevin, Roth, Frederick P, Tabet, Daniel, Bolognesi, Benedetta, Glazer, Andrew M, Rubin, Alan F, (2024). Minimum information and guidelines for reporting a multiplexed assay of variant effect Genome Biology 25, 100

Multiplexed assays of variant effect (MAVEs) have emerged as a powerful approach for interrogating thousands of genetic variants in a single experiment. The flexibility and widespread adoption of these techniques across diverse disciplines have led to a heterogeneous mix of data formats and descriptions, which complicates the downstream use of the resulting datasets. To address these issues and promote reproducibility and reuse of MAVE data, we define a set of minimum information standards for MAVE data and metadata and outline a controlled vocabulary aligned with established biomedical ontologies for describing these experimental designs.

JTD Keywords: Deep mutational scanning, Dms, Genetic variants, Genomics, Mave, Multiplexed assays of variant effect, Standards


Fowler, DM, Adams, DJ, Gloyn, AL, Hahn, WC, Marks, DS, Muffley, LA, Neal, JT, Roth, FP, Rubin, AF, Starita, LM, Hurles, ME, Ahituv, N, Bahcal, OG, Baldridge, D, Berg, JS, Berger, AH, Bianchi, AH, Bolognesi, B, Boutros, M, Brenner, S, Brush, MH, Bryant, V, Bult, CJ, Bulyk, M, Call, M, Carter, H, Claussnitzer, M, Chen, F, Cline, MS, Cuperus, JT, Dawood, M, De Jong, HN, Dias, M, Dunn, M, Engreitz, J, Farh, K, Febbo, PG, Fields, S, Findlay, GM, Firth, H, Fraser, JS, Frazer, J, Frontini, M, Romero, IG, Glazer, AM, Guler, M, Hartmann-Petersen, R, Houlston, R, Huang, KL, Hutter, CM, Jagannathan, S, James, RG, Kampmann, M, Karchin, R, Kinney, JB, Komor, AC, Kosuri, S, Lehner, B, Lindorff-Larsen, K, Lombard, Z, MacArthur, DG, Martin, M, McDermott, U, McNulty, SM, Ba, ANN, O'Donnell-Luria, A, O'Roak, BJ, Parikh, VN, Parts, L, Pazin, MJ, Pesaran, T, Petrovski, S, Queitsch, C, Root, DE, Shendure, J, Spurdle, AB, Taylor, KL, Turnbull, C, Villen, J, Vissers, LELM, Wagner, AH, Wakefield, MJ, Weile, J, Xiao, J, (2023). An Atlas of Variant Effects to understand the genome at nucleotide resolution Genome Biology 24, 147

Sequencing has revealed hundreds of millions of human genetic variants, and continued efforts will only add to this variant avalanche. Insufficient information exists to interpret the effects of most variants, limiting opportunities for precision medicine and comprehension of genome function. A solution lies in experimental assessment of the functional effect of variants, which can reveal their biological and clinical impact. However, variant effect assays have generally been undertaken reactively for individual variants only after and, in most cases long after, their first observation. Now, multiplexed assays of variant effect can characterise massive numbers of variants simultaneously, yielding variant effect maps that reveal the function of every possible single nucleotide change in a gene or regulatory element. Generating maps for every protein encoding gene and regulatory element in the human genome would create an 'Atlas' of variant effect maps and transform our understanding of genetics and usher in a new era of nucleotide-resolution functional knowledge of the genome. An Atlas would reveal the fundamental biology of the human genome, inform human evolution, empower the development and use of therapeutics and maximize the utility of genomics for diagnosing and treating disease. The Atlas of Variant Effects Alliance is an international collaborative group comprising hundreds of researchers, technologists and clinicians dedicated to realising an Atlas of Variant Effects to help deliver on the promise of genomics.

JTD Keywords: functional genomics, genome interpretation, global alliance, multiplexed assay of variant effect, saturation mutagenesis, Functional genomics, Genome interpretation, Global alliance, Multiplexed assay of variant effect, Saturation mutagenesis, Variant effect