DONATE

Publications

by Keyword: Wearable devices

Morales, John, Blanco Almazan, Dolores, Catthoor, Francky, Groenendaal, Willemijn, Jane, Raimon, (2024). Validation of a novel wearable device to estimate heart rate variability and cardiorespiratory indexes 2024 Ieee International Symposium On Medical Measurements And Applications, Memea 2024

Heart rate variability and cardiorespiratory coupling parameters show great potential in offering insights for the assessment and follow-up of patients with different conditions and diseases. The continual acquisition of these parameters would facilitate the ongoing evaluation of patients dealing with various health issues. In this work, we demonstrate the usability of a novel wearable device, the Digipredict Physiopatch, for estimating heart rate variability parameters in the frequency domain and a measure of cardiorespiratory coupling continuously. Signals recorded with the wearable and a Biopac benchtop system were utilized to calculate these parameters. We evaluate differences in the results obtained from the signals of the two devices. The results reveal three distinct aspects. Firstly, the values obtained with the Digipredict Physiopatch are, in general, not significantly different from the ones estimated with the Biopac system. Secondly, we illustrate that it is possible to estimate the cardiorespiratory index using the respiratory signals from the wearable, acquired through bioimpedance. This result validates the use of bioimpedance recorded with Digipredict Physiopatch as an alternative method for acquiring respiratory signals in wearable devices. Thirdly, the cardiorespiratory parameter evaluated in this work appears to be more robust to movement artifacts compared to the heart rate variability parameters due to the inclusion of respiratory information in the algorithms.

JTD Keywords: Cardiorespiratory coupling, Heart rate variabilit, Human, Respiratory sinus arrhythmia, Wearable devices


Kim, TY, Hong, SH, Jeong, SH, Bae, H, Cheong, S, Choi, H, Hahn, SK, (2023). Multifunctional Intelligent Wearable Devices Using Logical Circuits of Monolithic Gold Nanowires Advanced Materials 35, e2303401

Although multifunctional wearable devices have been widely investigated for healthcare systems, augmented/virtual realities, and telemedicines, there are few reports on multiple signal monitoring and logical signal processing by using one single nanomaterial without additional algorithms or rigid application-specific integrated circuit chips. Here, multifunctional intelligent wearable devices are developed using monolithically patterned gold nanowires for both signal monitoring and processing. Gold bulk and hollow nanowires show distinctive electrical properties with high chemical stability and high stretchability. In accordance, the monolithically patterned gold nanowires can be used to fabricate the robust interfaces, programmable sensors, on-demand heating systems, and strain-gated logical circuits. The stretchable sensors show high sensitivity for strain and temperature changes on the skin. Furthermore, the micro-wrinkle structures of gold nanowires exhibit the negative gauge factor, which can be used for strain-gated logical circuits. Taken together, this multifunctional intelligent wearable device would be harnessed as a promising platform for futuristic electronic and biomedical applications.© 2023 Wiley-VCH GmbH.

JTD Keywords: electronics, fabrication, intelligent multifunction, monolithic patterns, signal monitoring and processing, wearable devices, Gold nanowires, Intelligent multifunction, Intraocular-pressure, Monolithic patterns, Signal monitoring and processing, Wearable devices


Costa, JD, Ballester, BR, Verschure, PFMJ, (2021). A Rehabilitation Wearable Device to Overcome Post-stroke Learned Non-use. Methodology, Design and Usability Communications In Computer And Information Science 1538, 198-205

After a stroke, a great number of patients experience persistent motor impairments such as hemiparesis or weakness in one entire side of the body. As a result, the lack of use of the paretic limb might be one of the main contributors to functional loss after clinical discharge. We aim to reverse this cycle by promoting the use of the paretic limb during activities of daily living (ADLs). To do so, we describe the key components of a system composed of a wearable bracelet (i.e., a smartwatch) and a mobile phone, designed to bring a set of neurorehabilitation principles that promote acquisition, retention and generalization of skills to the home of the patient. A fundamental question is whether the loss in motor function derived from learned–non–use may emerge as a consequence of decision–making processes for motor optimization. Our system is based on well-established rehabilitation strategies that aim to reverse this behaviour by increasing the reward associated with action execution and implicitly reducing the expected cost of using the paretic limb, following the notion of reinforcement–induced movement therapy (RIMT). Here we validate an accelerometer-based measure of arm use and its capacity to discriminate different activities that require increasing movement of the arm. The usability and acceptance of the device as a rehabilitation tool is tested using a battery of self–reported and objective measurements obtained from acute/subacute patients and healthy controls. We believe that an extension of these technologies will allow for the deployment of unsupervised rehabilitation paradigms during and beyond hospitalization time. © 2021, Springer Nature Switzerland AG.

JTD Keywords: adls, hemiparesis, learned non-use, wearables, Activities of daily living, Adls, Functional loss, Generalisation, Hemiparesis, Learned non-use, Motor impairments, Neurorehabilitation [], Patient experiences, Stroke, Wearable devices, Wearable technology, Wearables