DONATE

Publications

by Keyword: Wearable sensors

Ballester BR, Winstein C, Schweighofer N, (2022). Virtuous and Vicious Cycles of Arm Use and Function Post-stroke Frontiers In Neurology 13, 804211

Large doses of movement practice have been shown to restore upper extremities' motor function in a significant subset of individuals post-stroke. However, such large doses are both difficult to implement in the clinic and highly inefficient. In addition, an important reduction in upper extremity function and use is commonly seen following rehabilitation-induced gains, resulting in “rehabilitation in vain”. For those with mild to moderate sensorimotor impairment, the limited spontaneous use of the more affected limb during activities of daily living has been previously proposed to cause a decline of motor function, initiating a vicious cycle of recovery, in which non-use and poor performance reinforce each other. Here, we review computational, experimental, and clinical studies that support the view that if arm use is raised above an effective threshold, one enters a virtuous cycle in which arm use and function can reinforce each other via self-practice in the wild. If not, one enters a vicious cycle of declining arm use and function. In turn, and in line with best practice therapy recommendations, this virtuous/vicious cycle model advocates for a paradigm shift in neurorehabilitation whereby rehabilitation be embedded in activities of daily living such that self-practice with the aid of wearable technology that reminds and motivates can enhance paretic limb use of those who possess adequate residual sensorimotor capacity. Altogether, this model points to a user-centered approach to recovery post-stroke that is tailored to the participant's level of arm use and designed to motivate and engage in self-practice through progressive success in accomplishing meaningful activities in the wild. Copyright © 2022 Ballester, Winstein and Schweighofer.

JTD Keywords: compensatory movement, computational neurorehabilitation, decision-making, individuals, learned non-use, learned nonuse, monkeys, neurorehabilitation, recovery, rehabilitation, stroke patients, wearable sensors, wrist, Arm movement, Article, Cerebrovascular accident, Clinical decision making, Clinical practice, Clinical study, Compensatory movement, Computational neurorehabilitation, Computer model, Daily life activity, Decision-making, Experimental study, Human, Induced movement therapy, Learned non-use, Musculoskeletal function, Neurorehabilitation, Paresis, Sensorimotor function, Stroke, Stroke rehabilitation, User-centered design, Vicious cycle, Virtuous cycle, Wearable sensors