by Keyword: airway-resistance

Farré, R, Navajas, D, (2023). Ventilation Mechanics Seminars In Respiratory And Critical Care Medicine 44, 511-525

A fundamental task of the respiratory system is to operate as a mechanical gas pump ensuring that fresh air gets in close contact with the blood circulating through the lung capillaries to achieve O2 and CO2 exchange. To ventilate the lungs, the respiratory muscles provide the pressure required to overcome the viscoelastic mechanical load of the respiratory system. From a mechanical viewpoint, the most relevant respiratory system properties are the resistance of the airways (R aw), and the compliance of the lung tissue (C L) and chest wall (C CW). Both airflow and lung volume changes in spontaneous breathing and mechanical ventilation are determined by applying the fundamental mechanical laws to the relationships between the pressures inside the respiratory system (at the airway opening, alveolar, pleural, and muscular) and R aw, C L, and C CW. These relationships also are the basis of the different methods available to measure respiratory mechanics during spontaneous and artificial ventilation. Whereas a simple mechanical model (R aw, C L, and C CW) describes the basic understanding of ventilation mechanics, more complex concepts (nonlinearity, inhomogeneous ventilation, or viscoelasticity) should be employed to better describe and measure ventilation mechanics in patients.Thieme. All rights reserved.

JTD Keywords: airway-resistance, alveolar, compliance, dilution, elastance, flow, inhomogeneous ventilation, input impedance, lung-volume, mechanical ventilation, monitoring, pendelluft, pleural pressure, respiratory-distress-syndrome, viscoelasticity, Chest-wall mechanics, Resistance

Morgenstern, C., Jané, R., Schwaibold, M., Randerath, W., (2008). Automatic classification of inspiratory flow limitation assessed non-invasively during sleep IEEE Engineering in Medicine and Biology Society Conference Proceedings 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (ed. IEEE), IEEE (Vancouver, Canada) 1-8, 1132-1135

Detection of inspiratory flow limitation (IFL) is being recognized of increasing importance in order to diagnose pathologies related to sleep disordered breathing. Currently, IFL is usually identified with the help of invasive esophageal pressure measurement, still considered the gold-standard reference to assess respiratory effort. But the invasiveness of esophageal pressure measurement and its impact on sleep discourages its use in clinical routine. In this study, a new non-invasive automatic system is proposed for objective IFL classification. First, an automatic annotation system for IFL based on pressure/flow relationship was developed. Then, classifiers (Support Vector Machines and adaboost classifiers) were trained with these gold-standard references in order to objectively classify breaths non-invasively, solely based on the breaths' flow contours. The new non-invasive automatic classification system seems to be promising, as it achieved a sensitivity of 0.92 and a specificity of 0.89, outperforming prior classification results obtained by human experts.

JTD Keywords: Upper airway-resistance