DONATE

Publications

by Keyword: bacterial biofilms

Alcàcer-Almansa, J, Arévalo-Jaimes, BV, Blanco-Cabra, N, Torrents, E, (2023). Methods for studying biofilms: Microfluidics and translation in the clinical context Methods In Microbiology 53, 195-233

Cendra, MD, Torrents, E, (2021). Pseudomonas aeruginosa biofilms and their partners in crime Biotechnology Advances 49, 107734

Pseudomonas aeruginosa biofilms and the capacity of the bacterium to coexist and interact with a broad range of microorganisms have a substantial clinical impact. This review focuses on the main traits of P. aeruginosa biofilms, such as the structural composition and regulatory networks involved, placing particular emphasis on the clinical challenges they represent in terms of antimicrobial susceptibility and biofilm infection clearance. Furthermore, the ability of P. aeruginosa to grow together with other microorganisms is a significant pathogenic attribute with clinical relevance; hence, the main microbial interactions of Pseudomonas are especially highlighted and detailed throughout this review. This article also explores the infections caused by single and polymicrobial biofilms of P. aeruginosa and the current models used to recreate them under laboratory conditions. Finally, the antimicrobial and antibiofilm strategies developed against P. aeruginosa mono and multispecies biofilms are detailed at the end of this review.

JTD Keywords: aeruginosa models, antibiotic-resistance, antimicrobials, bacterial biofilms, biofilms, c-di-gmp, chronic infections, enterococcus-faecalis, extracellular dna, in-vitro, lectin pa-iil, p, p. aeruginosa models, polymicrobial, polymicrobial interactions, staphylococcus-aureus, Antimicrobials, Biofilms, Chronic infections, P. aeruginosa models, Polymicrobial, Pseudomonas aeruginosa, Urinary-tract-infection


Sjoberg, B. M., Torrents, E., (2011). Shift in ribonucleotide reductase gene expression in pseudomonas aeruginosa during infection Infection and Immunity , 79, (7), 2663-2669

The roles of different ribonucleotide reductases (RNRs) in bacterial pathogenesis have not been studied systematically. In this work we analyzed the importance of the different Pseudomonas aeruginosa RNRs in pathogenesis using the Drosophila melanogaster host-pathogen interaction model. P. aeruginosa codes for three different RNRs with different environmental requirements. Class II and III RNR chromosomal mutants exhibited reduced virulence in this model. Translational reporter fusions of RNR gene nrdA, nrdJ, or nrdD to the green fluorescent protein were constructed to measure the expression of each class during the infection process. Analysis of the P. aeruginosa infection by flow cytometry revealed increased expression of nrdJ and nrdD and decreased nrdA expression during the infection process. Expression of each RNR class fits with the pathogenicities of the chromosomal deletion mutants. An extended understanding of the pathogenicity and physiology of P. aeruginosa will be important for the development of novel drugs against infections in cystic fibrosis patients.

JTD Keywords: Broad-host-range, Anaerobic growth, Drosophila-melanogaster, Bacterial biofilms, Escherichia-coli, Cystic-fibrosis, Model host, Virulence, Promoter, Vectors