DONATE

Publications

by Keyword: caries

Alambiaga-Caravaca, Adrian M, Chou, Yu Fu, Moreno, Daniel, Aparicio, Conrado, Lopez-Castellano, Alicia, Feitosa, Victor Pinheiro, Tezvergil-Mutluay, Arzu, Sauro, Salvatore, (2024). Characterisation of experimental flowable composites containing fluoride-doped calcium phosphates as promising remineralising materials Journal Of Dentistry 143, 104906

Objective: Remineralising composites with antibacterial properties may seal the cavity and prevent secondary caries. This study aimed at developing experimental flowable composites containing different concentrations of fluoride-doped calcium phosphate fillers and evaluating their remineralising and antibacterial properties. Methods: Experimental resin-based composites containing different concentrations (0-20 %) of fluoride-doped calcium phosphate fillers (VS10/VS20) were formulated. The release of calcium (Ca), phosphate (PO) and fluoride (F) ions was assessed for 30 days. Remineralisation properties were evaluated through ATR-FTIR and SEM/EDX after storage in simulated body fluid (SBF). The metabolic activity and viability of Streptococcus gordonii was also evaluated through ATP, CFU and live/dead confocal microscopy. The evaluation of specific monomer elution from the experimental composites was conducted using high-performance liquid chromatography (HPLC). Results: The composites containing VS10 showed the highest release of Ca, those containing VS20 released more F over time (p < 0.05), while there was no significant difference in terms of PO ions release between the groups (p > 0.05). A quick 7-day mineral precipitation was observed in the tested composites containing VS10 or VS20 at 10 %; these materials also showed the greatest antibacterial activity (p < 0.05). Moreover, the tested composites containing VS10 presented the lowest elution of monomers (p < 0.05). Conclusions: Innovative composites were developed with low monomers elution, evident antibacterial activity against S. gordonii and important remineralisation properties due to specific ions release.

JTD Keywords: Adhesion, Antibacterial, Apatite, Bacterial, Calcium phosphate, Caries, Demineralization, Dentistry, Elution, Enamel, Ion -release, Ion-release, Monomers, Remineralisation, Resin composite, Tissue


Moussa, DG, Sharma, AK, Mansour, TA, Witthuhn, B, Perdigao, J, Rudney, JD, Aparicio, C, Gomez, A, (2022). Functional signatures of ex-vivo dental caries onset Journal Of Oral Microbiology 14, 2123624

The etiology of dental caries remains poorly understood. With the advent of next-generation sequencing, a number of studies have focused on the microbial ecology of the disease. However, taxonomic associations with caries have not been consistent. Researchers have also pursued function-centric studies of the caries microbial communities aiming to identify consistently conserved functional pathways. A major question is whether changes in microbiome are a cause or a consequence of the disease. Thus, there is a critical need to define conserved functional signatures at the onset of dental caries.Since it is unethical to induce carious lesions clinically, we developed an innovative longitudinal ex-vivo model integrated with the advanced non-invasive multiphoton second harmonic generation bioimaging to spot the very early signs of dental caries, combined with 16S rRNA short amplicon sequencing and liquid chromatography-mass spectrometry-based targeted metabolomics.For the first time, we induced longitudinally monitored caries lesions validated with the scanning electron microscope. Consequently, we spotted the caries onset and, associated with it, distinguished five differentiating metabolites - Lactate, Pyruvate, Dihydroxyacetone phosphate, Glyceraldehyde 3-phosphate (upregulated) and Fumarate (downregulated). Those metabolites co-occurred with certain bacterial taxa; Streptococcus, Veillonella, Actinomyces, Porphyromonas, Fusobacterium, and Granulicatella, regardless of the abundance of other taxa.These findings are crucial for understanding the etiology and dynamics of dental caries, and devising targeted interventions to prevent disease progression.© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

JTD Keywords: bacteria, biofilms, children, dental caries, generation, genomics, longitudinal model, metabolism, metabolomics, microscopy, non-invasive bioimaging, oral microbiome, plaque, restorations, signatures, Dental caries, Field-emission sem, Signatures