DONATE

Publications

by Keyword: dissemination

Deborde, Sylvie, Gusain, Laxmi, Powers, Ann, Marcadis, Andrea, Yu, Yasong, Chen, Chun-Hao, Frants, Anna, Kao, Elizabeth, Tang, Laura H., Vakiani, Efsevia, Amisaki, Masataka, Balachandran, Vinod P., Calo, Annalisa, Omelchenko, Tatiana, Jessen, Kristjan R., Reva, Boris, Wong, Richard J., (2022). Reprogrammed Schwann cells organize into dynamic tracks that promote pancreatic cancer invasion Cancer Discovery 12, 2454-2473

Abstract Nerves are a component of the tumor microenvironment contributing to cancer progression, but the role of cells from nerves in facilitating cancer invasion remains poorly understood. Here we show that Schwann cells (SCs) activated by cancer cells collectively function as Tumor Activated Schwann cell Tracks (TASTs) that promote cancer cell migration and invasion. Non-myelinating SCs form TASTs and have cell gene expression signatures that correlate with diminished survival in patients with pancreatic ductal adenocarcinoma. In TASTs, dynamic SCs form tracks that serve as cancer pathways and apply forces on cancer cells to enhance cancer motility. These SCs are activated by c-Jun, analogous to their reprogramming during nerve repair. This study reveals a mechanism of cancer cell invasion that co-opts a wound repair process and exploits the ability of SCs to collectively organize into tracks. These findings establish a novel paradigm of how cancer cells spread and reveal therapeutic opportunities.

JTD Keywords: dissemination, escape, mechanisms, progression, Perineural invasion


Conti S, Kato T, Park D, Sahai E, Trepat X, Labernadie A, (2021). CAFs and cancer cells co-migration in 3D spheroid invasion assay Methods In Molecular Biology 2179, 243-256

© 2020, Springer Science+Business Media, LLC, part of Springer Nature. In many solid tumors, collective cell invasion prevails over single-cell dissemination strategies. Collective modes of invasion often display specific front/rear cellular organization, where invasive leader cells arise from cancer cell populations or the tumor stroma. Collective invasion involves coordinated cellular movements which require tight mechanical crosstalk through specific combinations of cell–cell interactions and cell–matrix adhesions. Cancer Associated Fibroblasts (CAFs) have been recently reported to drive the dissemination of epithelial cancer cells through ECM remodeling and direct intercellular contact. However, the cooperation between tumor and stromal cells remains poorly understood. Here we present a simple spheroid invasion assay to assess the role of CAFs in the collective migration of epithelial tumor cells. This method enables the characterization of 3D spheroid invasion patterns through live cell fluorescent labeling combined with spinning disc microscopy. When embedded in extracellular matrix, the invasive strands of spheroids can be tracked and leader/follower organization of CAFs and cancer cells can be quantified.

JTD Keywords: 3d spheroid invasion, cancer associated fibroblasts, collective migration, dissemination, epithelial cancer cells, leader/follower cells, 3d spheroid invasion, Cancer associated fibroblasts, Collective invasion, Collective migration, Epithelial cancer cells, Leader/follower cells


Pedro, L., Banos, R. C., Aznar, S., Madrid, C., Balsalobre, C., Juarez, A., (2011). Antibiotics shaping bacterial genome: Deletion of an IS91 flanked virulence determinant upon exposure to subinhibitory antibiotic concentrations PLoS ONE 6, (11), 11

The nucleoid-associated proteins Hha and YdgT repress the expression of the toxin a-hemolysin. An Escherichia coli mutant lacking these proteins overexpresses the toxin a-hemolysin encoded in the multicopy recombinant plasmid pANN202-312R. Unexpectedly, we could observe that this mutant generated clones that no further produced hemolysin (Hly(-)). Generation of Hly(-) clones was dependent upon the presence in the culture medium of the antibiotic kanamycin (km), a marker of the hha allele (hha::Tn5). Detailed analysis of different Hly(-) clones evidenced that recombination between partial IS91 sequences that flank the hly operon had occurred. A fluctuation test evidenced that the presence of km in the culture medium was underlying the generation of these clones. A decrease of the km concentration from 25 mg/l to 12.5 mg/l abolished the appearance of Hly(-) derivatives. We considered as a working hypothesis that, when producing high levels of the toxin (combination of the hha ydgT mutations with the presence of the multicopy hemolytic plasmid pANN202-312R), the concentration of km of 25 mg/l resulted subinhibitory and stimulated the recombination between adjacent IS91 flanking sequences. To further test this hypothesis, we analyzed the effect of subinhibitory km concentrations in the wild type E. coli strain MG1655 harboring the parental low copy number plasmid pHly152. At a km concentration of 5 mg/l, subinhibitory for strain MG1655 (pHly152), generation of Hly(-) clones could be readily detected. Similar results were also obtained when, instead of km, ampicillin was used. IS91 is flanking several virulence determinants in different enteric bacterial pathogenic strains from E. coli and Shigella. The results presented here evidence that stress generated by exposure to subinhibitory antibiotic concentrations may result in rearrangements of the bacterial genome. Whereas some of these rearrangements may be deleterious, others may generate genotypes with increased virulence, which may resume infection.

JTD Keywords: Promotes horizontal dissemination, Enterica serovar typhimurium, Escherichia-coli strains, Insertion-sequence IS91, H-NS, Adaptive amplification, Pathogenicity islands, Hemolysin