by Keyword: epithelial-cells

Raptopoulos, M, Fischer, NG, Aparicio, C, (2023). Implant surface physicochemistry affects keratinocyte hemidesmosome formation Journal Of Biomedical Materials Research Part a 111, 1021-1030

Previous studies have shown hydrophilic/hydrophobic implant surfaces stimulate/hinder osseointegration. An analogous concept was applied here using common biological functional groups on a model surface to promote oral keratinocytes (OKs) proliferation and hemidesmosomes (HD) to extend implant lifespans through increased soft tissue attachment. However, it is unclear what physicochemistry stimulates HDs. Thus, common biological functional groups (NH2 , OH, and CH3 ) were functionalized on glass using silanization. Non-functionalized plasma-cleaned glass and H silanization were controls. Surface modifications were confirmed with X-ray photoelectron spectroscopy and water contact angle. The amount of bovine serum albumin (BSA) and fibrinogen, and BSA thickness, were assessed to understand how adsorbed protein properties were influenced by physicochemistry and may influence HDs. OKs proliferation was measured, and HDs were quantified with immunofluorescence for collagen XVII and integrin β4. Plasma-cleaned surfaces were the most hydrophilic group overall, while CH3 was the most hydrophobic and OH was the most hydrophilic among functionalized groups. Modification with the OH chemical group showed the highest OKs proliferation and HD expression. The OKs response on OH surfaces appeared to not correlate to the amount or thickness of adsorbed model proteins. These results reveal relevant surface physicochemical features to favor HDs and improve implant soft tissue attachment.© 2023 The Authors. Journal of Biomedical Materials Research Part A published by Wiley Periodicals LLC.

JTD Keywords: attachment, chemistry, collagen, differentiation, epithelial-cells, hemidesmosome, implant, in-vitro, integrin, keratinocyte, mechanism, organosilane, physicochemistry, protein adsorption, Attachment, Cell-adhesion, Physicochemistry

Safi, W, Marco, A, Moya, D, Prado, P, Garreta, E, Montserrat, N, (2022). Assessing kidney development and disease using kidney organoids and CRISPR engineering Frontiers In Cell And Developmental Biology 10, 948395

The differentiation of human pluripotent stem cells (hPSCs) towards organoids is one of the biggest scientific advances in regenerative medicine. Kidney organoids have not only laid the groundwork for various organ-like tissue systems but also provided insights into kidney embryonic development. Thus, several protocols for the differentiation of renal progenitors or mature cell types have been established. Insights into the interplay of developmental pathways in nephrogenesis and determination of different cell fates have enabled the in vitro recapitulation of nephrogenesis. Here we first provide an overview of kidney morphogenesis and patterning in the mouse model in order to dissect signalling pathways that are key to define culture conditions sustaining renal differentiation from hPSCs. Secondly, we also highlight how genome editing approaches have provided insights on the specific role of different genes and molecular pathways during renal differentiation from hPSCs. Based on this knowledge we further review how CRISPR/Cas9 technology has enabled the recapitulation and correction of cellular phenotypes associated with human renal disease. Last, we also revise how the field has positively benefited from emerging technologies as single cell RNA sequencing and discuss current limitations on kidney organoid technology that will take advantage from bioengineering solutions to help standardizing the use of this model systems to study kidney development and disease.Copyright © 2022 Safi, Marco, Moya, Prado, Garreta and Montserrat.

JTD Keywords: crispr, directed differentiation, epithelial-cells, expression, kidney engineering, kidney organoids, model, mouse, nephrogenesis, nephron number, podocytes, progenitor, Crispr, Kidney engineering, Kidney organoids, Nephrogenesis, Pluripotent stem cells, Pluripotent stem-cells

Rätze, MAK, Koorman, T, Sijnesael, T, Bassey-Archibong, B, van de Ven, R, Enserink, L, Visser, D, Jaksani, S, Viciano, I, Bakker, ERM, Richard, F, Tutt, A, O'Leary, L, Fitzpatrick, A, Roca-Cusachs, P, van Diest, PJ, Desmedt, C, Daniel, JM, Isacke, CM, Derksen, PWB, (2022). Loss of E-cadherin leads to Id2-dependent inhibition of cell cycle progression in metastatic lobular breast cancer Oncogene 41, 2932-2944

Invasive lobular breast carcinoma (ILC) is characterized by proliferative indolence and long-term latency relapses. This study aimed to identify how disseminating ILC cells control the balance between quiescence and cell cycle re-entry. In the absence of anchorage, ILC cells undergo a sustained cell cycle arrest in G0/G1 while maintaining viability. From the genes that are upregulated in anchorage independent ILC cells, we selected Inhibitor of DNA binding 2 (Id2), a mediator of cell cycle progression. Using loss-of-function experiments, we demonstrate that Id2 is essential for anchorage independent survival (anoikis resistance) in vitro and lung colonization in mice. Importantly, we find that under anchorage independent conditions, E-cadherin loss promotes expression of Id2 in multiple mouse and (organotypic) human models of ILC, an event that is caused by a direct p120-catenin/Kaiso-dependent transcriptional de-repression of the canonical Kaiso binding sequence TCCTGCNA. Conversely, stable inducible restoration of E-cadherin expression in the ILC cell line SUM44PE inhibits Id2 expression and anoikis resistance. We show evidence that Id2 accumulates in the cytosol, where it induces a sustained and CDK4/6-dependent G0/G1 cell cycle arrest through interaction with hypo-phosphorylated Rb. Finally, we find that Id2 is indeed enriched in ILC when compared to other breast cancers, and confirm cytosolic Id2 protein expression in primary ILC samples. In sum, we have linked mutational inactivation of E-cadherin to direct inhibition of cell cycle progression. Our work indicates that loss of E-cadherin and subsequent expression of Id2 drive indolence and dissemination of ILC. As such, E-cadherin and Id2 are promising candidates to stratify low and intermediate grade invasive breast cancers for the use of clinical cell cycle intervention drugs.

JTD Keywords: anoikis resistance, carcinoma, d1, differentiation, gene-expression, growth, id2, proliferation, repression, Mammary epithelial-cells