DONATE

Publications

by Keyword: gc-ms

Oliveira LFD, Mallafré-Muro C, Giner J, Perea L, Sibila O, Pardo A, Marco S, (2022). Breath analysis using electronic nose and gas chromatography-mass spectrometry: A pilot study on bronchial infections in bronchiectasis Clinica Chimica Acta 526, 6-13

Background and aims: In this work, breath samples from clinically stable bronchiectasis patients with and without bronchial infections by Pseudomonas Aeruginosa- PA) were collected and chemically analysed to determine if they have clinical value in the monitoring of these patients. Materials and methods: A cohort was recruited inviting bronchiectasis patients (25) and controls (9). Among the former group, 12 members were suffering PA infection. Breath samples were collected in Tedlar bags and analyzed by e-nose and Gas Chromatography-Mass Spectrometry (GC-MS). The obtained data were analyzed by chemometric methods to determine their discriminant power in regards to their health condition. Results were evaluated with blind samples. Results: Breath analysis by electronic nose successfully separated the three groups with an overall classification rate of 84% for the three-class classification problem. The best discrimination was obtained between control and bronchiectasis with PA infection samples 100% (CI95%: 84–100%) on external validation and the results were confirmed by permutation tests. The discrimination analysis by GC-MS provided good results but did not reach proper statistical significance after a permutation test. Conclusions: Breath sample analysis by electronic nose followed by proper predictive models successfully differentiated between control, Bronchiectasis and Bronchiectasis PA samples. © 2021 The Author(s)

JTD Keywords: biomarkers, breath analysis, bronchiectasis, diagnosis, e-nose, fingerprints, gc-ms, identification, lung-cancer, partial least-squares, pseudomonas-aeruginosa, signal processing, validation, volatile organic-compounds, Airway bacterial-colonization, Breath analysis, Bronchiectasis, E-nose, Gc-ms, Signal processing


de Oliveira LF, Braga SCGN, Augusto F, Poppi RJ, (2021). Correlating comprehensive two-dimensional gas chromatography volatile profiles of chocolate with sensory analysis Brazilian Journal Of Analytical Chemistry 8, 131-140

The identification of key components relevant to sensory perception of quality from commercial chocolate samples was accomplished after chemometric processing of GC×GC-MS (Comprehensive Two-dimensional Gas Chromatography with Mass Spectrometric Detection) profiles corresponding to HS-SPME (Headspace Solid Phase Microextraction) extracts of the samples. Descriptive sensory evaluation of samples was carried out using Optimized Descriptive Profile (ODP) procedures, where sensory attributes of 24 commercial chocolate samples were used to classify them in two classes (low and high chocolate flavor). 2D Fisher Ratio analysis was applied to four-way chromatographic data tensors (1st dimension retention time 1tR × 2nd dimension retention time 2tR × m/z × sample), to identify the crucial areas on the chromatograms that resulted on ODP class separation on Principal Component Analysis (PCA) scores plot. Comparing the relevant sections of the chromatograms to the analysis of the corresponding mass spectra, it was possible to assess that most of the information regarding the sample main sensory attributes can be related to only 14 compounds (2,5-dimethylpyrazine, 2,6-dimethyl-4-heptanol, 1-octen-3-ol, trimethylpyrazine, β-pinene, o-cimene, 2-ethyl-3,5-dimethylpyrazine, tetramethylpyrazine, benzaldehyde, 1,3,5-trimethylbenzene, 6-methyl-5-hepten-2-one, limonene, benzeneethanol and 1,1-dimethylbutylbenzene) among the complex blend of volatiles found on these extremely complex samples.

JTD Keywords: classification, cocoa, dark chocolate, feature-selection, fisher ratio, gcxgc-ms, impact, olfactometry, principal component analysis, sensorial analysis, Chocolate flavor, Fisher ratio, Flight mass-spectrometry, Gc×gc-ms, Principal component analysis, Sensorial analysis


Oller-Moreno, S., Pardo, A., Jimenez-Soto, J. M., Samitier, J., Marco, S., (2014). Adaptive Asymmetric Least Squares baseline estimation for analytical instruments SSD 2014 Proceedings 11th International Multi-Conference on Systems, Signals & Devices (SSD) , IEEE (Castelldefels-Barcelona, Spain) , 1569846703

Automated signal processing in analytical instrumentation is today required for the analysis of highly complex biomedical samples. Baseline estimation techniques are often used to correct long term instrument contamination or degradation. They are essential for accurate peak area integration. Some methods approach the baseline estimation iteratively, trying to ignore peaks which do not belong to the baseline. The proposed method in this work consists of a modification of the Asymmetric Least Squares (ALS) baseline removal technique developed by Eilers and Boelens. The ALS technique suffers from bias in the presence of intense peaks (in relation to the noise level). This is typical of diverse instrumental techniques such as Gas Chromatography-Mass Spectrometry (GC-MS) or Gas Chromatography-Ion Mobility Spectrometry (GC-IMS). In this work, we propose a modification (named psalsa) to the asymmetry weights of the original ALS method in order to better reject large peaks above the baseline. Our method will be compared to several versions of the ALS algorithm using synthetic and real GC signals. Results show that our proposal improves previous versions being more robust to parameter variations and providing more accurate peak areas.

JTD Keywords: Gas chromatography, Instruments, Radioactivity measurement, Signal processing, Analytical instrument, Analytical Instrumentation, Asymmetric least squares, Baseline estimation, Baseline removal, Gas chromatography-mass spectrometries (GC-MS), Instrumental techniques, Noise levels, Iterative methods