by Keyword: least-squares

Oliveira LFD, Mallafré-Muro C, Giner J, Perea L, Sibila O, Pardo A, Marco S, (2022). Breath analysis using electronic nose and gas chromatography-mass spectrometry: A pilot study on bronchial infections in bronchiectasis Clinica Chimica Acta 526, 6-13

Background and aims: In this work, breath samples from clinically stable bronchiectasis patients with and without bronchial infections by Pseudomonas Aeruginosa- PA) were collected and chemically analysed to determine if they have clinical value in the monitoring of these patients. Materials and methods: A cohort was recruited inviting bronchiectasis patients (25) and controls (9). Among the former group, 12 members were suffering PA infection. Breath samples were collected in Tedlar bags and analyzed by e-nose and Gas Chromatography-Mass Spectrometry (GC-MS). The obtained data were analyzed by chemometric methods to determine their discriminant power in regards to their health condition. Results were evaluated with blind samples. Results: Breath analysis by electronic nose successfully separated the three groups with an overall classification rate of 84% for the three-class classification problem. The best discrimination was obtained between control and bronchiectasis with PA infection samples 100% (CI95%: 84–100%) on external validation and the results were confirmed by permutation tests. The discrimination analysis by GC-MS provided good results but did not reach proper statistical significance after a permutation test. Conclusions: Breath sample analysis by electronic nose followed by proper predictive models successfully differentiated between control, Bronchiectasis and Bronchiectasis PA samples. © 2021 The Author(s)

JTD Keywords: biomarkers, breath analysis, bronchiectasis, diagnosis, e-nose, fingerprints, gc-ms, identification, lung-cancer, partial least-squares, pseudomonas-aeruginosa, signal processing, validation, volatile organic-compounds, Airway bacterial-colonization, Breath analysis, Bronchiectasis, E-nose, Gc-ms, Signal processing

Freire R, Fernandez L, Mallafré-Muro C, Martín-Gómez A, Madrid-Gambin F, Oliveira L, Pardo A, Arce L, Marco S, (2021). Full workflows for the analysis of gas chromatography—ion mobility spectrometry in foodomics: Application to the analysis of iberian ham aroma Sensors 21,

Gas chromatography—ion mobility spectrometry (GC-IMS) allows the fast, reliable, and inexpensive chemical composition analysis of volatile mixtures. This sensing technology has been successfully employed in food science to determine food origin, freshness and preventing alimentary fraud. However, GC-IMS data is highly dimensional, complex, and suffers from strong non-linearities, baseline problems, misalignments, peak overlaps, long peak tails, etc., all of which must be corrected to properly extract the relevant features from samples. In this work, a pipeline for signal pre-processing, followed by four different approaches for feature extraction in GC-IMS data, is presented. More precisely, these approaches consist of extracting data features from: (1) the total area of the reactant ion peak chromatogram (RIC); (2) the full RIC response; (3) the unfolded sample matrix; and (4) the ion peak volumes. The resulting pipelines for data processing were applied to a dataset consisting of two different quality class Iberian ham samples, based on their feeding regime. The ability to infer chemical information from samples was tested by comparing the classification results obtained from partial least-squares discriminant analysis (PLS-DA) and the samples’ variable importance for projection (VIP) scores. The choice of a feature extraction strategy is a trade-off between the amount of chemical information that is preserved, and the computational effort required to generate the data models.

JTD Keywords: authenticity, classification, electronic-nose, feature extraction, food analysis, gc-ims, headspace, least-squares, models, pld-da, pre-processing, quality, sensory analysis, wine, Feature extraction, Food analysis, Gc-ims, Hs-gc-ims, Pld-da, Pre-processing

Martinez, Dominique, Burgués, Javier, Marco, Santiago, (2019). Fast measurements with MOX sensors: A least-squares approach to blind deconvolution Sensors 19, (18), 4029

Metal oxide (MOX) sensors are widely used for chemical sensing due to their low cost, miniaturization, low power consumption and durability. Yet, getting instantaneous measurements of fluctuating gas concentration in turbulent plumes is not possible due to their slow response time. In this paper, we show that the slow response of MOX sensors can be compensated by deconvolution, provided that an invertible, parametrized, sensor model is available. We consider a nonlinear, first-order dynamic model that is mathematically tractable for MOX identification and deconvolution. By transforming the sensor signal in the log-domain, the system becomes linear in the parameters and these can be estimated by the least-squares techniques. Moreover, we use the MOX diversity in a sensor array to avoid training with a supervised signal. The information provided by two (or more) sensors, exposed to the same flow but responding with different dynamics, is exploited to recover the ground truth signal (gas input). This approach is known as blind deconvolution. We demonstrate its efficiency on MOX sensors recorded in turbulent plumes. The reconstructed signal is similar to the one obtained with a fast photo-ionization detector (PID). The technique is thus relevant to track a fast-changing gas concentration with MOX sensors, resulting in a compensated response time comparable to that of a PID.

JTD Keywords: MOX sensors, Blind deconvolution, Blind identification, Least-squares, Turbulent plumes.