DONATE

Publications

by Keyword: liver fibrosis

Ortiz C, Schierwagen R, Schaefer L, Klein S, Trepat X, Trebicka J, (2021). Extracellular Matrix Remodeling in Chronic Liver Disease Current Tissue Microenvironment Reports 2, 41-52

Abstract Purpose of the Review This review aims to summarize the current knowledge of the extracellular matrix remodeling during hepatic fibrosis. We discuss the diverse interactions of the extracellular matrix with hepatic cells and the surrounding matrix in liver fibrosis, with the focus on the molecular pathways and the mechanisms that regulate extracellular matrix remodeling. Recent Findings The extracellular matrix not only provides structure and support for the cells, but also controls cell behavior by providing adhesion signals and by acting as a reservoir of growth factors and cytokines. Summary Hepatic fibrosis is characterized by an excessive accumulation of extracellular matrix. During fibrogenesis, the natural remodeling process of the extracellular matrix varies, resulting in the excessive accumulation of its components, mainly collagens. Signals released by the extracellular matrix induce the activation of hepatic stellate cells, which are the major source of extracellular matrix and most abundant myofibroblasts in the liver. Graphical abstract

JTD Keywords: collagen, extracellular matrix, hepatic stellate cell, liver fibrosis, metalloproteinases, Tgf-?1, Tgf-β1


Cremonese, C., Schierwagen, R., Uschner, F. E., Torres, S., Tyc, O., Ortiz, C., Schulz, M., Queck, A., Kristiansen, G., Bader, M., Sauerbruch, T., Weiskirchen, R., Walther, T., Trebicka, J., Klein, S., (2020). Short-term western diet aggravates non-alcoholic fatty liver disease (NAFLD) with portal hypertension in TGR(mREN2)27 rats International Journal of Molecular Sciences 21, (9), 3308

Non-alcoholic fatty liver disease (NAFLD) is gaining in importance and is linked to obesity. Especially, the development of fibrosis and portal hypertension in NAFLD patients requires treatment. Transgenic TGR(mREN2)27 rats overexpressing mouse renin spontaneously develop NAFLD with portal hypertension but without obesity. This study investigated the additional role of obesity in this model on the development of portal hypertension and fibrosis. Obesity was induced in twelve-week old TGR(mREN2)27 rats after receiving Western diet (WD) for two or four weeks. Liver fibrosis was assessed using standard techniques. Hepatic expression of transforming growth factor-β1 (TGF-β1), collagen type Iα1, α-smooth muscle actin, and the macrophage markers Emr1, as well as the chemoattractant Ccl2, interleukin-1β (IL1β) and tumor necrosis factor-α (TNFα) were analyzed. Assessment of portal and systemic hemodynamics was performed using the colored microsphere technique. As expected, WD induced obesity and liver fibrosis as confirmed by Sirius Red and Oil Red O staining. The expression of the monocyte-macrophage markers, Emr1, Ccl2, IL1β and TNFα were increased during feeding of WD, indicating infiltration of macrophages into the liver, even though this increase was statistically not significant for the EGF module-containing mucin-like receptor (Emr1) mRNA expression levels. Of note, portal pressure increased with the duration of WD compared to animals that received a normal chow. Besides obesity, WD feeding increased systemic vascular resistance reflecting systemic endothelial and splanchnic vascular dysfunction. We conclude that transgenic TGR(mREN2)27 rats are a suitable model to investigate NAFLD development with liver fibrosis and portal hypertension. Tendency towards elevated expression of Emr1 is associated with macrophage activity point to a significant role of macrophages in NAFLD pathogenesis, probably due to a shift of the renin–angiotensin system towards a higher activation of the classical pathway. The hepatic injury induced by WD in TGR(mREN2)27 rats is suitable to evaluate different stages of fibrosis and portal hypertension in NAFLD with obesity.

JTD Keywords: ADGRE1, EMR1, F4/80, Immunity, Liver fibrosis, Macrophage, NAFLD, Portal hypertension, TGR(mREN2)27, Western diet


Brol, M. J., Rösch, F., Schierwagen, R., Magdaleno, F., Uschner, F. E., Manekeller, S., Queck, A., Schwarzkopf, K., Odenthal, M., Drebber, U., Thiele, M., Lingohr, P., Plamper, A., Kristiansen, G., Lotersztajn, S., Krag, A., Klein, S., Rheinwalt, K. P., Trebicka, J., Galaxy, Consortium, (2019). Combination of CCL4 with alcoholic and metabolic injuries mimics human liver fibrosis American Journal of Physiology - Gastrointestinal and Liver Physiology 317, (2), G182-G194

Metabolic and alcoholic liver injuries result in nonalcoholic (NAFLD) or alcoholic (ALD) fatty liver disease, respectively. In particular, presence of fibrosis in NAFLD and ALD requires treatment, but development of drugs is hampered by the lack of suitable models with significant fibrosis. The carbon tetrachloride (CCl4) liver fibrosis model does not reflect human NAFLD or ALD, but CCl4 may serve as a fibrosis accelerator in addition to another injury. Ethanol in drinking water (16%) or Western diet (WD) were administered for 7 wk in mice either alone or in combination with CCl4 intoxications. Extent of fibrosis, steatosis, and inflammation was assessed by histology, transcription, and biochemistry. Furthermore, transcription of fibrosis, proliferation, and inflammation-related genes was studied on human liver samples with fibrosis resulting from hepatitis C virus infection (n = 7), NAFLD (n = 8), or ALD (n = 7). WD or ethanol alone induced only mild steatosis and inflammation. Combination of CCl4 and WD induced the most severe steatosis together with significant liver fibrosis and moderate inflammation. Combination of CCl4 and ethanol induced the strongest inflammation, with significant liver fibrosis and moderate steatosis. The relationship pattern between fibrosis, proliferation, and inflammation of human ALD was mostly similar in mice treated with CCl4 and ethanol. The combination of CCl4 intoxication with WD validates previous data suggesting it as an appropriate model for human nonalcoholic steatohepatitis. Especially, CCl4 plus ethanol for 7 wk induces ALD in mice, providing a model suitable for further basic research and drug testing. NEW & NOTEWORTHY Alcoholic fatty liver disease with significant fibrosis is generated within 7 wk using carbon tetrachloride as a fibrosis accelerator and administering gradually ethanol (up to 16%) in mice. The similarity in the pattern of steatosis, inflammation, and fibrosis involved in alcoholic fatty liver disease to those of the human condition renders this mouse model suitable as a preclinical model for drug development.

JTD Keywords: ASH, Liver fibrosis, NAFLD, NASH