by Keyword: pH effect on passivity

Díez-Pérez, Ismael, Sanz, Fausto, Gorostiza, Pau, (2006). Electronic barriers in the iron oxide film govern its passivity and redox behavior: Effect of electrode potential and solution pH Electrochemistry Communications , 8, (10), 1595-1602

We have measured in situ the electronic conductance spectra of the passive film formed on an Fe electrode immersed in a borate buffer solution using electrochemical tunneling spectroscopy (ECTS) and electrochemical impedance spectroscopy (EIS) techniques, and we have followed their changes as the electrode is electrochemically oxidized and reduced. We demonstrate that pre-passive Fe(II) oxide and the passive Fe(II)/Fe(III) film, behave as p- and n-type semiconductors, respectively and that their reversible inter-conversion is mediated by the availability of free charge carriers on the electrode surface. ECTS spectra have been also modeled to obtain the main electrochemical kinetic parameters of the electron transfer through both p-Fe(II) and n-Fe(III) oxides at different sample potentials and pHs values. We find that the electronic energy barrier in the oxide and its dependence with electrode potential and solution pH, determine the reactivity and passivity of iron.

JTD Keywords: Electrochemical tunneling spectroscopy, Fe passivity Electronic energy barriers, pH effect on passivity