by Keyword: partial least-squares

Oliveira LFD, Mallafré-Muro C, Giner J, Perea L, Sibila O, Pardo A, Marco S, (2022). Breath analysis using electronic nose and gas chromatography-mass spectrometry: A pilot study on bronchial infections in bronchiectasis Clinica Chimica Acta 526, 6-13

Background and aims: In this work, breath samples from clinically stable bronchiectasis patients with and without bronchial infections by Pseudomonas Aeruginosa- PA) were collected and chemically analysed to determine if they have clinical value in the monitoring of these patients. Materials and methods: A cohort was recruited inviting bronchiectasis patients (25) and controls (9). Among the former group, 12 members were suffering PA infection. Breath samples were collected in Tedlar bags and analyzed by e-nose and Gas Chromatography-Mass Spectrometry (GC-MS). The obtained data were analyzed by chemometric methods to determine their discriminant power in regards to their health condition. Results were evaluated with blind samples. Results: Breath analysis by electronic nose successfully separated the three groups with an overall classification rate of 84% for the three-class classification problem. The best discrimination was obtained between control and bronchiectasis with PA infection samples 100% (CI95%: 84–100%) on external validation and the results were confirmed by permutation tests. The discrimination analysis by GC-MS provided good results but did not reach proper statistical significance after a permutation test. Conclusions: Breath sample analysis by electronic nose followed by proper predictive models successfully differentiated between control, Bronchiectasis and Bronchiectasis PA samples. © 2021 The Author(s)

JTD Keywords: biomarkers, breath analysis, bronchiectasis, diagnosis, e-nose, fingerprints, gc-ms, identification, lung-cancer, partial least-squares, pseudomonas-aeruginosa, signal processing, validation, volatile organic-compounds, Airway bacterial-colonization, Breath analysis, Bronchiectasis, E-nose, Gc-ms, Signal processing