DONATE

Publications

by Keyword: reactivity

Iglesias-Fernandez, M, Buxadera-Palomero, J, Sadowska, JM, Espanol, M, Ginebra, MP, (2022). Implementation of bactericidal topographies on biomimetic calcium phosphates and the potential effect of its reactivity Biomaterials Advances 136, 212797

Since the discovery that nanostructured surfaces were able to kill bacteria, many works have been published focusing on the design of nanopatterned surfaces with antimicrobial properties. Synthetic bone grafts, based on calcium phosphate (CaP) formulations, can greatly benefit from this discovery if adequate nanotopographies can be developed. However, CaP are reactive materials and experience ionic exchanges when placed into aqueous solutions which may in turn affect cell behaviour and complicate the interpretation of the bactericidal results. The present study explores the bactericidal potential of two nanopillared CaP prepared by hydrolysis of two different sizes of alpha-tricalcium phosphate (alpha-TCP) powders under biomimetic or hydrothermal conditions. A more lethal bactericidal response toward Pseudomonas aeruginosa (similar to 75% killing efficiency of adhered bacteria) was obtained from the hydrothermally treated CaP which consisted in a more irregular topography in terms of pillar size (radius: 20-60 nm), interpillar distances (100-1500 nm) and pillar distribution (pillar groups forming bouquets) than the biomimetically treated one (radius: 20-40 nm and interpillar distances: 50-200 nm with a homogeneous pillar distribution). The material reactivity was greatly influenced by the type of medium (nutrient-rich versus nutrient-free) and the presence or not of bacteria. A lower reactivity and superior bacterial attachment were observed in the nutrient-free medium while a lower attachment was observed for the nutrient rich medium which was explained by a superior reactivity of the material paired with the lower tendency of planktonic bacteria to adhere on surfaces in the presence of nutrients. Importantly, the ionic exchanges produced by the presence of materials were not toxic to planktonic cells. Thus, we can conclude that topography was the main contributor to mortality in the bacterial adhesion tests.

JTD Keywords: bactericidal, calcium deficient hydroxyapatite, calcium phosphates, nanopillars, pseudomonas aeruginosa, reactivity, Adhesion, Anti-bacterial agents, Antibacterial, Bacterial adhesion, Bactericidal, Biomaterials, Biomimetics, Calcium deficient hydroxyapatite, Calcium phosphates, Hydroxyapatite, In-vitro, Infections, Nanopillars, Nanostructures, Pseudomonas aeruginosa, Pseudomonas-aeruginosa, Reactivity, Recent progress, Silver, Topography, Transmission


Konka, J, Espanol, M, Bosch, BM, de Oliveira, E, Ginebra, MP, (2021). Maturation of biomimetic hydroxyapatite in physiological fluids: a physicochemical and proteomic study Materials Today Bio 12, 100137

Biomimetic calcium-deficient hydroxyapatite (CDHA) as a bioactive material exhibits exceptional intrinsic osteoinductive and osteogenic properties because of its nanostructure and composition, which promote a favorable microenvironment. Its high reactivity has been hypothesized to play a relevant role in the in vivo performance, mediated by the interaction with the biological fluids, which is amplified by its high specific surface area. Paradoxically, this high reactivity is also behind the in vitro cytotoxicity of this material, especially pro-nounced in static conditions. The present work explores the structural and physicochemical changes that CDHA undergoes in contact with physiological fluids and to investigate its interaction with proteins. Calcium-deficient hydroxyapatite discs with different micro/nanostructures, coarse (C) and fine (F), were exposed to cell-free complete culture medium over extended periods of time: 1, 7, 14, 21, 28, and 50 days. Precipitate formation was not observed in any of the materials in contact with the physiological fluid, which would indicate that the ionic exchanges were linked to incorporation into the crystal structure of CDHA or in the hydrated layer. In fact, CDHA experienced a maturation process, with a progressive increase in crystallinity and the Ca/P ratio, accompanied by an uptake of Mg and a B-type carbonation process, with a gradual propagation into the core of the samples. However, the reactivity of biomimetic hydroxyapatite was highly dependent on the specific surface area and was amplified in nanosized needle-like crystal structures (F), whereas in coarse specimens the ionic exchanges were restricted to the surface, with low penetration in the material bulk. In addition to showing a higher protein adsorption on F substrates, the proteomics study revealed the existence of protein selectivity to-ward F or C microstructures, as well as the capability of CDHA, and more remarkably of F-CDHA, to concentrate specific proteins from the culture medium. Finally, a substantial improvement in the material's ability to support cell proliferation was observed after the CDHA maturation process.

JTD Keywords: calcium phosphates, ion exchange, nanostructure, protein adsorption, Biological-systems, Biomaterials, Biomimetic hydroxyapatites, Biomimetics, Bone-formation, Calcium deficient hydroxyapatite, Calcium phosphate, Calcium phosphates, Cell proliferation, Crystal structure, Crystallinity, Crystals structures, Culture medium, Growth, High reactivity, Hydroxyapatite, In-vitro, Ion exchange, Ionic exchange, Molecular biology, Nanocrystalline apatites, Nanostructure, Nanostructures, Octacalcium phosphate, Physicochemical studies, Physiological fluids, Physiology, Protein adsorption, Proteins, Proteomic studies, Raman spectroscopy, Serum-albumin, Specific surface area


Bortolla, R., Cavicchioli, M., Soler Rivaldi, J., Pascual Mateos, J.C., Verschure, P., Maffei, C., (2020). Hypersensitivity or hyperreactivity? An experimental investigation in Borderline Personality Disorder Mediterranean Journal of Clinical Psychology 8, (1), 1-17

Objective: Starting from the controversial results showed by empirical research on Linehan’s Biosocial model of Borderline Personality Disorder (BPD), this study aims to empirically evaluate Linehan’s conceptualization of emotional hypersensitivity and hyperreactivity, as well as to investigate the role of pre-existing emotional states in BPD altered physiological responsivity. Methods: We asked 24 participants (BPD = 12; Healthy Controls = 12) to complete a self-reported questionnaire (Positive and Negative Affect Schedule) in order to assess their pre-task affective state. Subsequently, 36 emotional pictures from four valence categories (i.e. erotic, negative, positive, neutral) were administered while assessing participants self-reported and electrodermal responses. Results: BPD patients showed higher levels of pre-task negative affectivity as well as an enhanced physiological response to neutral stimuli. No main BPD group effect was found for the physiological data. Moreover, pre-task negative affectivity levels were exclusively related to physiological responses among BPD subjects. Discussion: Our findings supported the hypersensitivity hypothesis operationalized as an enhanced responsiveness to non-emotional cues. Hyperreactivity assumption was not supported. Conversely, our study revealed heightened physiological responses in relation to pre-existent negative emotional states in BPD. We discussed our results in the context of the putative pathological processes underlying BPD.

JTD Keywords: Borderline Personality Disorder, Biosocial model, Hyperreactivity, Hypersensitivity, Negative affectivity, Physiology.