DONATE

Publications

by Keyword: Adhesion molecules

Nong, J, Glassman, PM, Myerson, JW, Zuluaga-Ramirez, V, Rodriguez-Garcia, A, Mukalel, A, Omo-Lamai, S, Walsh, LR, Zamora, ME, Gong, XJ, Wang, ZC, Bhamidipati, K, Kiseleva, RY, Villa, CH, Greineder, CF, Kasner, SE, Weissman, D, Mitchell, MJ, Muro, S, Persidsky, Y, Brenner, JS, Muzykantov, VR, Marcos-Contreras, OA, (2023). Targeted Nanocarriers Co-Opting Pulmonary Intravascular Leukocytes for Drug Delivery to the Injured Brain Acs Nano 17, 13121-13136

Ex vivo-loaded white blood cells (WBC) can transfer cargo to pathological foci in the central nervous system (CNS). Here we tested affinity ligand driven in vivo loading of WBC in order to bypass the need for ex vivo WBC manipulation. We used a mouse model of acute brain inflammation caused by local injection of tumor necrosis factor alpha (TNF-α). We intravenously injected nanoparticles targeted to intercellular adhesion molecule 1 (anti-ICAM/NP). We found that (A) at 2 h, >20% of anti-ICAM/NP were localized to the lungs; (B) of the anti-ICAM/NP in the lungs >90% were associated with leukocytes; (C) at 6 and 22 h, anti-ICAM/NP pulmonary uptake decreased; (D) anti-ICAM/NP uptake in brain increased up to 5-fold in this time interval, concomitantly with migration of WBCs into the injured brain. Intravital microscopy confirmed transport of anti-ICAM/NP beyond the blood-brain barrier and flow cytometry demonstrated complete association of NP with WBC in the brain (98%). Dexamethasone-loaded anti-ICAM/liposomes abrogated brain edema in this model and promoted anti-inflammatory M2 polarization of macrophages in the brain. In vivo targeted loading of WBC in the intravascular pool may provide advantages of coopting WBC predisposed to natural rapid mobilization from the lungs to the brain, connected directly via conduit vessels.

JTD Keywords: drug delivery, icam-1, inflammation, lung injury, messenger-rna, migration, model, nanoparticles, neutrophils, pharmacokinetics, t-cells, white bloodcells, Adhesion molecules, Brain, Drug delivery, Inflammation, Nanoparticles, Pharmacokinetics, White blood cells


Bakker, G. J., Eich, C., Torreno-Pina, J. A., Diez-Ahedo, R., Perez-Samper, G., Van Zanten, T. S., Figdor, C. G., Cambi, A., Garcia-Parajo, M. F., (2012). Lateral mobility of individual integrin nanoclusters orchestrates the onset for leukocyte adhesion Proceedings of the National Academy of Sciences of the United States of America 109, (13), 4869-4874

Integrins are cell membrane adhesion receptors involved in morphogenesis, immunity, tissue healing, and metastasis. A central, yet unresolved question regarding the function of integrins is how these receptors regulate both their conformation and dynamic nanoscale organization on the membrane to generate adhesion-competent microclusters upon ligand binding. Here we exploit the high spatial (nanometer) accuracy and temporal resolution of single-dye tracking to dissect the relationship between conformational state, lateral mobility, and microclustering of the integrin receptor lymphocyte function-associated antigen 1 (LFA-1) expressed on immune cells. We recently showed that in quiescent monocytes, LFA-1 preorganizes in nanoclusters proximal to nanoscale raft components. We now show that these nanoclusters are primarily mobile on the cell surface with a small (ca. 5%) subset of conformational- active LFA-1 nanoclusters preanchored to the cytoskeleton. Lateral mobility resulted crucial for the formation of microclusters upon ligand binding and for stable adhesion under shear flow. Activation of high-affinity LFA-1 by extracellular Ca 2+ resulted in an eightfold increase on the percentage of immobile nanoclusters and cytoskeleton anchorage. Although having the ability to bind to their ligands, these active nanoclusters failed to support firm adhesion in static and low shear-flow conditions because mobility and clustering capacity were highly compromised. Altogether, our work demonstrates an intricate coupling between conformation and lateral diffusion of LFA-1 and further underscores the crucial role of mobility for the onset of LFA-1 mediated leukocyte adhesion.

JTD Keywords: Cumulative probability distribution, Integrin lymphocyte function-associated antigen 1, Intercellular adhesion molecule, Single molecule detection