by Keyword: Impedance

By year:[ 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Parra-Cabrera, C., Samitier, J., Homs-Corbera, A., (2016). Multiple biomarkers biosensor with just-in-time functionalization: Application to prostate cancer detection Biosensors and Bioelectronics 77, 1192-1200

We present a novel lab-on-a-chip (LOC) device for the simultaneous detection of multiple biomarkers using simple voltage measurements. The biosensor functionalization is performed in-situ, immediately before its use, facilitating reagents storage and massive devices fabrication. Sensitivity, limit of detection (LOD) and limit of quantification (LOQ) are tunable depending on the in-chip flown sample volumes. As a proof-of-concept, the system has been tested and adjusted to quantify two proteins found in blood that are susceptible to be used combined, as a screening tool, to diagnose prostate cancer (PCa): prostate-specific antigen (PSA) and spondin-2 (SPON2). This combination of biomarkers has been reported to be more specific for PCa diagnostics than the currently accepted but rather controversial PSA indicator. The range of detection for PSA and SPON2 could be adjusted to the clinically relevant range of 1 to 10. ng/ml. The system was tested for specificity to the evaluated biomarkers. This multiplex system can be modified and adapted to detect a larger quantity of biomarkers, or different ones, of relevance to other specific diseases.

Keywords: Adjustable sensing, Impedance measurements, In situ functionalization, Microfluidics, Prostate specific antigen, Self-assembled monolayers

Páez-Avilés, C., Juanola-Feliu, E., Punter-Villagrasa, J., Del Moral Zamora, B., Homs-Corbera, A., Colomer-Farrarons, J., Miribel-Català , P. L., Samitier, J., (2016). Combined dielectrophoresis and impedance systems for bacteria analysis in microfluidic on-chip platforms Sensors 16, (9), 1514

Bacteria concentration and detection is time-consuming in regular microbiology procedures aimed to facilitate the detection and analysis of these cells at very low concentrations. Traditional methods are effective but often require several days to complete. This scenario results in low bioanalytical and diagnostic methodologies with associated increased costs and complexity. In recent years, the exploitation of the intrinsic electrical properties of cells has emerged as an appealing alternative approach for concentrating and detecting bacteria. The combination of dielectrophoresis (DEP) and impedance analysis (IA) in microfluidic on-chip platforms could be key to develop rapid, accurate, portable, simple-to-use and cost-effective microfluidic devices with a promising impact in medicine, public health, agricultural, food control and environmental areas. The present document reviews recent DEP and IA combined approaches and the latest relevant improvements focusing on bacteria concentration and detection, including selectivity, sensitivity, detection time, and conductivity variation enhancements. Furthermore, this review analyses future trends and challenges which need to be addressed in order to successfully commercialize these platforms resulting in an adequate social return of public-funded investments.

Keywords: Bacteria, Dielectrophoresis, Impedance, Microfluidics, On-chip

Botaya, L., Coromina, X., Samitier, J., Puig-Vidal, M., Otero, J., (2016). Visualized multiprobe electrical impedance measurements with STM tips using shear force feedback control Sensors 16, (6), 757

Here we devise a multiprobe electrical measurement system based on quartz tuning forks (QTFs) and metallic tips capable of having full 3D control over the position of the probes. The system is based on the use of bent tungsten tips that are placed in mechanical contact (glue-free solution) with a QTF sensor. Shear forces acting in the probe are measured to control the tip-sample distance in the Z direction. Moreover, the tilting of the tip allows the visualization of the experiment under the optical microscope, allowing the coordination of the probes in X and Y directions. Meanwhile, the metallic tips are connected to a current-voltage amplifier circuit to measure the currents and thus the impedance of the studied samples. We discuss here the different aspects that must be addressed when conducting these multiprobe experiments, such as the amplitude of oscillation, shear force distance control, and wire tilting. Different results obtained in the measurement of calibration samples and microparticles are presented. They demonstrate the feasibility of the system to measure the impedance of the samples with a full 3D control on the position of the nanotips.

Keywords: Impedance measurement, Multiprobe SPM, Quartz tuning forks, Scanning probe microscopy, Scanning tunneling microscope (STM) tip

Barreiros dos Santos, M., Azevedo, S., Agusil, J. P., Prieto-Simón, B., Sporer, C., Torrents, E., Juárez, A., Teixeira, V., Samitier, J., (2015). Label-free ITO-based immunosensor for the detection of very low concentrations of pathogenic bacteria Bioelectrochemistry 101, 146-152

Abstract Here we describe the fabrication of a highly sensitive and label-free ITO-based impedimetric immunosensor for the detection of pathogenic bacteria Escherichia coli O157:H7. Anti-E. coli antibodies were immobilized onto ITO electrodes using a simple, robust and direct methodology. First, the covalent attachment of epoxysilane on the ITO surface was demonstrated by Atomic Force Microscopy and cyclic voltammetry. The immobilization of antibody on the epoxysilane layer was quantified by Optical Waveguide Lightmode Spectroscopy, obtaining a mass variation of 12 ng cm− 2 (0.08 pmol cm− 2). Microcontact printing and fluorescence microscopy were used to demonstrate the specific binding of E. coli O157:H7 to the antibody-patterned surface. We achieved a ratio of 1:500 Salmonella typhimurium/E. coli O157:H7, thus confirming the selectivity of the antibodies and efficiency of the functionalization procedure. Finally, the detection capacity of the ITO-based immunosensor was evaluated by Electrochemical Impedance Spectroscopy. A very low limit of detection was obtained (1 CFU mL− 1) over a large linear working range (10–106 CFU mL− 1). The specificity of the impedimetric immunosensor was also examined. Less than 20% of non-specific bacteria (S. typhimurium and E. coli K12) was observed. Our results reveal the applicability of ITO for the development of highly sensitive and selective impedimetric immunosensors.

Keywords: E. coli O157:H7, Electrochemical Impedance Spectroscopy, Immunosensor, Indium tin oxide, Label-free detection

del Moral-Zamora, Beatriz, Punter-Villagrassa, Jaime, Oliva-Brañas, Ana M., Álvarez-Azpeitia, Juan Manuel, Colomer-Farrarons, Jordi, Samitier, Josep, Homs-Corbera, Antoni, Miribel-Català, Pere Ll, (2015). Combined dielectrophoretic and impedance system for on-chip controlled bacteria concentration: application to Escherichia coli Electrophoresis 36, (9-10), 1130-1141

The present paper reports a bacteria autonomous controlled concentrator prototype with a user-friendly interface for bench-top applications. It is based on a micro-fluidic lab-on-a-chip and its associated custom instrumentation, which consists in a dielectrophoretic actuator, to pre-concentrate the sample, and an impedance analyser, to measure concentrated bacteria levels. The system is composed by a single micro-fluidic chamber with interdigitated electrodes and a instrumentation with custom electronics. The prototype is supported by a real-time platform connected to a remote computer, which automatically controls the system and displays impedance data used to monitor the status of bacteria accumulation on-chip. The system automates the whole concentrating operation. Performance has been studied for controlled volumes of Escherichia coli (E. coli) samples injected into the micro-fluidic chip at constant flow rate of 10 μL/min. A media conductivity correcting protocol has been developed, as the preliminary results showed distortion of the impedance analyser measurement produced by bacterial media conductivity variations through time. With the correcting protocol, the measured impedance values were related to the quantity of bacteria concentrated with a correlation of 0.988 and a coefficient of variation of 3.1%. Feasibility of E. coli on-chip automated concentration, using the miniaturized system, has been demonstrated. Furthermore, the impedance monitoring protocol had been adjusted and optimized, to handle changes in the electrical properties of the bacteria media over time.

Keywords: Autonomous Device, Bacteria Concentrator, Dielectrophoresis, Escherichia coli, Impedance Analysis

Gramse, G., Kasper, M., Fumagalli, L., Gomila, G., Hinterdorfer, P., Kienberger, F., (2014). Calibrated complex impedance and permittivity measurements with scanning microwave microscopy Nanotechnology 25, (14), 145703 (8)

We present a procedure for calibrated complex impedance measurements and dielectric quantification with scanning microwave microscopy. The calibration procedure works in situ directly on the substrate with the specimen of interest and does not require any specific calibration sample. In the workflow tip-sample approach curves are used to extract calibrated complex impedance values and to convert measured S11 reflection signals into sample capacitance and resistance images. The dielectric constant of thin dielectric SiO2 films were determined from the capacitance images and approach curves using appropriate electrical tip-sample models and the εr value extracted at f = 19.81 GHz is in good agreement with the nominal value of εr ∼ 4. The capacitive and resistive material properties of a doped Si semiconductor sample were studied at different doping densities and tip-sample bias voltages. Following a simple serial model the capacitance-voltage spectroscopy curves are clearly related to the semiconductor depletion zone while the resistivity is rising with falling dopant density from 20 Ω to 20 kΩ. The proposed procedure of calibrated complex impedance measurements is simple and fast and the accuracy of the results is not affected by varying stray capacitances. It works for nanoscale samples on either fully dielectric or highly conductive substrates at frequencies between 1 and 20 GHz.

Keywords: Complex impedance, Dielectric constant, Nanotechnology: calibration, Resistivity, Scanning microwave microscopy

Castillo-Fernandez, O., Rodriguez-Trujillo, R., Gomila, G., Samitier, J., (2014). High-speed counting and sizing of cells in an impedance flow microcytometer with compact electronic instrumentation Microfluidics and Nanofluidics 16, (1-2), 91-99

Here we describe a high-throughput impedance flow cytometer on a chip. This device was built using compact and inexpensive electronic instrumentation. The system was used to count and size a mixed cell sample containing red blood cells and white blood cells. It demonstrated a counting capacity of up to ~500 counts/s and was validated through a synchronised high-speed optical detection system. In addition, the device showed excellent discrimination performance under high-throughput conditions.

Keywords: Electronics, Impedance, Microcytometry, Microfluidics, Red blood cells (RBCs), White blood cells (WBCs)

Caballero, D., Martinez, E., Bausells, J., Errachid, A., Samitier, J., (2012). Impedimetric immunosensor for human serum albumin detection on a direct aldehyde-functionalized silicon nitride surface Analytica Chimica Acta 720, 43-48

In this work we report the fabrication and characterization of a label-free impedimetric immunosensor based on a silicon nitride (Si 3N 4) surface for the specific detection of human serum albumin (HSA) proteins. Silicon nitride provides several advantages compared with other materials commonly used, such as gold, and in particular in solid-state physics for electronic-based biosensors. However, few Si 3N 4-based biosensors have been developed; the lack of an efficient and direct protocol for the integration of biological elements with silicon-based substrates is still one of its the main drawbacks. Here, we use a direct functionalization method for the direct covalent binding of monoclonal anti-HSA antibodies on an aldehyde-functionalized Si-p/SiO 2/Si 3N 4 structure. This methodology, in contrast with most of the protocols reported in literature, requires less chemical reagents, it is less time-consuming and it does not need any chemical activation. The detection capability of the immunosensor was tested by performing non-faradaic electrochemical impedance spectroscopy (EIS) measurements for the specific detection of HSA proteins. Protein concentrations within the linear range of 10 -13-10 -7M were detected, showing a sensitivity of 0.128ΩμM -1 and a limit of detection of 10 -14M. The specificity of the sensor was also addressed by studying the interferences with a similar protein, bovine serum albumin. The results obtained show that the antibodies were efficiently immobilized and the proteins detected specifically, thus, establishing the basis and the potential applicability of the developed silicon nitride-based immunosensor for the detection of proteins in real and more complex samples.

Keywords: Aldehyde, Electrochemical impedance spectroscopy, Human serum albumin, Immunosensor, Silicon nitride, Bovine serum albumins, Chemical reagents, Complex samples, Covalent binding, Detection capability, Electrochemical impedance, Electrochemical impedance spectroscopy measurements, Functionalizations, Human serum albumins, Impedimetric immunosensors, Label free, Limit of detection, Linear range, Protein concentrations, Silicon-based, Specific detection, Aldehydes

de Oliveira, I. A. M., Vocanson, F., Uttaro, J. P., Asfari, Z., Mills, C. A., Samitier, J., Errachid, A., (2010). Characterization of a self-assembled monolayer based on a calix[4]crown-5 derivate: fabrication of a chemical sensor sensitive to calcium Journal of Nanoscience and Nanotechnology 10, (1), 413-420

The synthesis and self-assembled monolayer (SAM) formation of a calix[4]crown-5 derivative are reported. Several techniques, including electrochemistry, atomic force microscopy (AFM), Time-of-flight secondary ion mass spectrometry (ToF-SIMS) and contact angle measurements have been applied to characterise the monolayer film designed for chemical sensor applications. The recognition properties of this SAM for metal cations has been investigated using impedance spectroscopy (IS) showing an electrochemical response proportional to calcium ion concentration in the range from 10(-7) M to 10(-2) M. This response is related to microscopic changes at the gold surface induced by selective binding by the immobilised calixarene.

Keywords: Calixarenes, Self assembled monolayer, Micro-contact printing, Atomic force microscopy, Impedance spectroscopy

Illa, X., Rodriguez-Trujillo, R., Ordeig, O., De Malsche, W., Homs-Corbera, A., Gardeniers, H., Desmet, G., Kutter, J. P., Samitier, J., Romano-Rodríguez, A., (2010). Simultaneous impedance and fluorescence detection of proteins in a cyclo olefin polymer chip containing a column with an ordered pillar array with integrated gold microelectrodes MicroTAS 2010 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences , UoG (Gorningen, The Netherlands) 2, 1280-1282

In this work, we report the detection of proteins by means of simultaneous fluorescence and impedance measurements in a cyclo olefin polymer (COP) chip containing an ordered pillar array column, used for reversed-phase liquid chromatography, with integrated microband gold electrodes at the end of the channel.

Keywords: Cyclo olefin polymer, Gold microelectrodes, Impedance, Pillar array, Protein detection

Sellares, J., Acerbi, I., Loureiro, H., Dellaca, R. L., Ferrer, M., Torres, A., Navajas, D., Farre, R., (2009). Respiratory impedance during weaning from mechanical ventilation in a mixed population of critically ill patients British Journal of Anaesthesia 103, (6), 828-832

Worsening of respiratory mechanics during a spontaneous breathing trial (SBT) has been traditionally associated with weaning failure, although this finding is based on studies with chronic obstructive pulmonary disease patients only. The aim of our study was to assess the course of respiratory impedance non-invasively measured by forced oscillation technique (FOT) during a successful and failed SBT in a mixed population. Thirty-four weaning trials were reported in 29 consecutive mechanically ventilated patients with different causes of initiation of ventilation. During the SBT, the patient was breathing through a conventional T-piece connected to the tracheal tube. FOT (5 Hz, +/- 1 cm H2O, 30 s) was applied at 5, 10, 15, 20, 25, and 30 min. Respiratory resistance (Rrs) and reactance (Xrs) were computed from pressure and flow measurements. The frequency to tidal volume ratio f/V-t was obtained from the flow signal. At the end of the trial, patients were divided into two groups: SBT success and failure. Mixed model analysis showed no significant differences in Rrs and Xrs over the course of the SBT, or between the success (n=16) and the failure (n=18) groups. In contrast, f/V-t was significantly (P < 0.001) higher in the failure group. Worsening of respiratory impedance measured by FOT is not a common finding during a failed SBT in a typically heterogeneous intensive care unit population of mechanically ventilated patients.

Keywords: Ventilation, High frequency oscillation, Ventilation, Mechanical, Ventilation, Respiratory impedance

Barreiros dos Santos, M., Sporer, C., Sanvicens, N., Pascual, N., Errachid, A., Martinez, E., Marco, M. P., Teixeira, V., Samiter, J., (2009). Detection of pathogenic Bacteria by Electrochemical Impedance Spectroscopy: Influence of the immobilization strategies on the sensor performance Procedia Chemistry 23rd Eurosensors Conference (ed. Brugger, J., Briand, D.), Elsevier Science, BV (Lausanne, Switzerland) 1, 1291-1294

Electrochemical impedance spectroscopy (EIS) is applied to detect pathogenic E. coli O157:H7 bacteria via a label free immunoassay-based detection method. Polyclonal anti-E.coli antibodies (PAb) are immobilized onto gold electrodes following two different strategies, via chemical bond formation between antibody amino groups and a carboxylic acid containing self-assembled molecular monolayer (SAM) and alternatively by linking a biotinylated anti-E. coli to Neutravidin on a mixed-SAM. Impedance spectra for sensors of both designs for increasing concentrations of E. coli are recorded in phosphate buffered saline (PBS). The Nyquist plots can be modeled with a Randle equivalent circuit, identifying the charge transfer resistance RCT as the relevant concentration dependent parameter. Sensors fabricated from both designs are able to detect very low concentration of E. coli with limits of detection as low as 10-100 cfu/ml. The influence of the different immobilization protocols on the sensor performance is evaluated in terms of sensitivity, dynamic range and resistance against nonspecific absorption.

Keywords: Bacteria detection, Biosensors, E-coli, Impedance spectroscopy

Guaus, E., Torrent-Burgues, J., Zine, N., Errachid, A., (2009). Glassy carbon electrode modified with a langmuir-blodgett film of a thiomacrocyclic ionophore for Cu(II) recognition Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 1006-1011

Nanometric films of a thiomacrocyclic ionophore, 4-phenyl-4-sulfide-11(1- oxodecyl)-1,7-dithia-11-aza-4-phosphacyclotetradecane (ThM), have been deposited on the surface of a Glassy Carbon Electrode (GCE) by the Langmuir-Blodgett (LB) technique. The films have been characterised by using AFM. The influence of these modified electrodes (GCE-ThM) on the reduction of Cu(II) ions has been investigated by using Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS), and its sensor response has been checked. The CV and EIS responses of LB films on GCE indicate that these ThM films are sensitive to Cu(II) ions. The analysis by EIS of the interference of some other cations, as Mg(II) and Co(II), shows that LB films of ThM can be used for specific Cu(II) sensing applications.

Keywords: Cu(II) sensor, Cyclic voltammetry, Electrochemical impedance spectroscopy, Langmuir-blodgett films

Rodriguez-Trujillo, R., Castillo-Fernandez, O., Garrido, M., Arundell, M., Valencia, A., Gomila, G., (2008). High-speed particle detection in a micro-Coulter counter with two-dimensional adjustable aperture Biosensors and Bioelectronics 24, (2), 290-296

This article presents the fabrication and characterisation of a high-speed detection micro-Coulter counter with two-dimensional (2D) adjustable aperture and differential impedance detection. The developed device has been fabricated from biocompatible and transparent materials (polymer and glass) and uses the principle of hydrodynamic focusing in two dimensions. The use of a conductive solution for the sample flux and non-conductive solutions for the focalising fluxes provides an adjustable sample flow where particles are aligned and the resistive response concentrated, consequently enhancing the sensitivity and versatility of the device. High-speed counting of 20 mu m polystyrene particles and 5 mu m yeast cells with a rate of up to 1000 particles/s has been demonstrated. Two-dimensional focusing conditions have been used in devices with physical cross-sectional areas of 180 mu m x 65 mu m and 100 mu m x 43 mu m, respectively, in which particles resulted undetectable in the absence of focusing. The 2D-focusing conditions have provided, in addition, increased detection sensitivity by a factor of 1.6 as compared to 1 D-focusing conditions.

Keywords: Impedance, Chip, Microfluidics

Farre, R., Montserrat, J. M., Navajas, D., (2008). Assessment of upper airway mechanics during sleep Respiratory Physiology & Neurobiology 163, (1-3), 74-81

Obstructive sleep apnea, which is the most prevalent sleep breathing disorder, is characterized by recurrent episodes of upper airway collapse and reopening. However, the mechanical properties of the upper airway are not directly measured in routine polysomnography because only qualitative sensors (thermistors for flow and thoraco-abdominal bands for pressure) are used. This review focuses on two techniques that quantify upper airway obstruction during sleep. A Starling model of collapsible conduit allows us to interpret the mechanics of the upper airway by means of two parameters: the critical pressure (Pcrit) and the upstream resistance (Rup). A simple technique to measure Pcrit and Rup involves the application of different levels of continuous positive airway pressure (CPAP) during sleep. The forced oscillation technique is another non-invasive procedure for quantifying upper airway impedance during the breathing cycle in sleep studies. The latest developments in these two methods allow them to be easily applied on a routine basis in order to more fully characterize upper airway mechanics in patients with sleep breathing disorders.

Keywords: Obstructive sleep apnea, Upper airway, Airway resistance, Critical pressure, Respiratory impedance

Gustavsson, J., Altankov, G., Errachid, A., Samitier, J., Planell, J. A., Engel, E., (2008). Surface modifications of silicon nitride for cellular biosensor applications Journal of Materials Science-Materials in Medicine 19, (4), 1839-1850

Thin films of silicon nitride (Si3N4) can be used in several kinds of micro-sized biosensors as a material to monitor fine environmental changes related to the process of bone formation in vitro. We found however that Si3N4 does not provide optimal conditions for osseointegration as osteoblast-like MG-63 cells tend to detach from the surface when cultured over confluence. Therefore Si3N4 was modified with self-assembled monolayers bearing functional end groups of primary amine (NH2) and carboxyl (COOH) respectively. Both these modifications enhanced the interaction with confluent cell layers and thus improve osseointegration over Si3N4. Furthermore it was observed that the NH2 functionality increased the adsorption of fibronectin (FN), promoted cell proliferation, but delayed the differentiation. We also studied the fate of pre-adsorbed and secreted FN from cells to learn more about the impact of above functionalities for the development of provisional extracellular matrix on materials interface. Taken together our data supports that Si3N4 has low tissue integration but good cellular biocompatibility and thus is appropriate in cellular biosensor applications such as the ion-sensitive field effect transistor (ISFET). COOH and NH2 chemistries generally improve the interfacial tissue interaction with the sensor and they are therefore suitable substrates for monitoring cellular growth or matrix deposition using electrical impedance spectroscopy.

Keywords: Adsorption, Amines/chemistry, Biocompatible Materials/ chemistry, Biosensing Techniques, Cell Differentiation, Cell Line, Cell Proliferation, Electric Impedance, Extracellular Matrix/metabolism, Fibronectins/chemistry, Humans, Materials Testing, Osteoblasts/ cytology, Silicon Compounds/ chemistry, Surface Properties

Rodriguez-Trujillo, R., Castillo-Fernandez, O., Arundell, M., Samitier, J., Gomila, G., (2008). Yeast cells detection in a very fast and highly versatile microfabricated cytometer MicroTAS 2008 12th International Conference on Miniaturized Systems for Chemistry and Life Sciences , Chemical and Biological Microsystems Society (San Diego, USA) , 1888-1890

A novel microfluidic chip able to detect a wide range of different cell sizes at very high rates is reported. The device uses two-dimensional hydrodynamic focusing [1] of the sample (conducting) flow by three non-conducting flows and high-speed differential impedance detection electronics. High-speed counting of 15μm polystyrene particles and 5μm yeast cells with a rate of up to 1000 particles/s has been demonstrated. Using of two-dimensional focusing effect turn out to be essential in a device with very large cross-sectional area (100x43 μm2) in which particles result undetectable in the absence of focusing.

Keywords: Coulter-counter, Impedance, Microfluidics, Polydimethylsiloxane