DONATE

Publications

by Keyword: Scattering

Boda, SK, Willkomm, N, Barrera, MS, Mansky, L, Aparicio, C, (2023). Electrostatic capture of viruses on cationic biopolymer membranes for intra-oral disease sampling Colloids And Surfaces B-Biointerfaces 232, 113602

Naso- and oropharyngeal swabs are the Center for Disease Control and Prevention (CDC) -recommended disease sampling methods for respiratory viruses. The short swabbing time for sampling by these methods may lead to variability in test results. Further, these methods are mildly invasive and can cause discomfort, tearing or gag reflexes in tested individuals. If longer sampling time is coupled with lesser patient discomfort, test reliability and patient compliance can be improved. Towards this end, we developed cationic biopolymer membranes for the electrostatic capturing of viruses in the oral cavity. Here, chemically (EDC-NHS) crosslinked uncharged chitosan (CS) nanofiber membranes were conferred either with negative surface charge by anionic poly-aspartic acid (pAsp) coating or positive charge by cationic poly-L-lysine (PLL). Consistent with our preliminary findings of dynamic light scattering (DLS) size measurements showing large agglomerates of anionic virus-like particles (VLPs) and cationic PLL in solution, a 75% increase in VLP adsorption by PLL coated CS membranes was recorded by enzyme linked immunosorbent assay (ELISA), in comparison to untreated controls. It is envisaged that the electrostatic concentration of respiratory viruses on cationic membranes can be superior alternatives to traditional swabbing in the oral cavity.

JTD Keywords: Cationic biopolymer membranes, Disease sampling, Dynamic light scattering (dls), Electrostatic capture of viruses, Enzyme linked immunosorbent assay (elisa), Magnetic beads, Virus -like particles (vlps)


Mingot, J, Benejam, N, Víllora, G, Alemán, C, Armelin, E, Lanzalaco, S, (2023). Multimodal Biomedical Implant with Plasmonic and Simulated Body Temperature Responses Macromolecular Bioscience 23, e2300118

This work presents a novel nanoparticle-based thermosensor implant able to reveal the precise temperature variations along the polymer filaments, as it contracts and expands due to changes in the macroscale local temperature. The multimodal device is able to trace the position and the temperature of a polypropylene mesh, employed in abdominal hernia repair, by combining plasmon resonance and Raman spectroscopy with hydrogel responsive system. The novelty relies on the attachment of the biocompatible nanoparticles, based on gold stabilized by a chitosan-shell, already charged with the Raman reporter (RaR) molecules, to the robust prosthesis, without the need of chemical linkers. The SERS enhanced effect observed is potentiated by the presence of a quite thick layer of the copolymer (poly(N-isopropylacrylamide)-co-poly(acrylamide)) hydrogel. At temperatures above the LCST of PNIPAAm-co-PAAm, the water molecules are expulsed and the hydrogel layer contracts, leaving the RaR molecules more accessible to the Raman source. In vitro studies with fibroblast cells reveal that the functionalized surgical mesh is biocompatible and no toxic substances are leached in the medium. The mesh sensor opens new frontiers to semi-invasive diagnosis and infection prevention in hernia repair by using SERS spectroscopy. It also offers new possibilities to the functionalization of other healthcare products.© 2023 Wiley-VCH GmbH.

JTD Keywords: adhesion, blends, chitosan, gold nanoparticles, poly(n-isopropylacrylamide), polypropylene mesh, polypropylene meshes, repair, scattering, silver, surgical implants, thermosensitive hydrogels, toxicity, Chitosan, Gold nanoparticles, Polypropylene meshes, Surgical implants, Thermosensitive hydrogels


Sans, J, Arnau, M, Sanz, V, Turon, P, Alemán, C, (2022). Hydroxyapatite-based biphasic catalysts with plasticity properties and its potential in carbon dioxide fixation Chemical Engineering Journal 433, 133512

The design of catalysts with controlled selectivity at will, also known as catalytic plasticity, is a very attractive approach for the recycling of carbon dioxide (CO2). In this work, we study how catalytically active hydroxyapatite (HAp) and brushite (Bru) interact synergistically, allowing the production of formic acid or acetic acid depending on the HAp/Bru ratio in the catalyst. Raman, wide angle X-ray scattering, X-ray photoelectron spectroscopy, scanning electron microscopy and electrochemical impedance spectroscopy studies, combined with an exhaustive revision of the crystalline structure of the catalyst at the atomic level, allowed to discern how the Bru phase can be generated and stabilized at high temperatures. Results clearly indicate that the presence of OH– groups to maintain the crystalline structural integrity in conjunction with Ca2+ ions less bonded to the lattice fixate carbon into C1, C2 and C3 molecules from CO2 and allow the evolution from formic to acetic acid and acetone. In this way, the plasticity of the HAp-Bru system is demonstrated, representing a promising green alternative to the conventional metal-based electrocatalysts used for CO2 fixation. Thus, the fact that no electric voltage is necessary for the CO2 reduction has a very favorable impact in the final energetic net balance of the carbon fixation reaction. © 2021

JTD Keywords:

ethanol production & nbsp, brushite, co2 reduction, conversion, electrocatalytic reduction, electrode, formate, heterogeneous catalysis & nbsp, hydrogen evolution, insights, monetite, polarized hydroxyapatite,

, Acetic acid, Acetone, Biphasic catalyst, Brushite, Calcium phosphate, Carbon dioxide, Carbon dioxide fixation, Catalysis, Catalyst selectivity, Co 2 reduction, Co2 reduction, Electrocatalysts, Electrochemical impedance spectroscopy, Electrochemical reduction, Electrochemical-impedance spectroscopies, Ethanol production, Formic acid, Heterogeneous catalysis, Hydroxyapatite, Ph, Polarized hydroxyapatite, Property, Reduction, Scanning electron microscopy, Temperature programmed desorption, Wide angle x-ray scattering, X ray photoelectron spectroscopy, X ray scattering, ]+ catalyst


RIZZELO, L, DE MATTEIS, V, (2022). Identification of SARS-CoV-2 by Gold Nanoparticles Biocell 46, 2369-2380

The SARS-CoV-2 outbreaks highlighted the need for effective, reliable, fast, easy-to-do and cheap diagnostics procedures. We pragmatically experienced that an early positive-case detection, inevitably coupled with a mass vaccination campaign, is a milestone to control the COVID-19 pandemic. Gold nanoparticles (AuNPs) can indeed play a crucial role in this context, as their physicochemical, optics and electronics properties are being extensively used in photothermal therapy (PTT), radiation therapy (RT), drug delivery and diagnostic. AuNPs can be synthesized by several approaches to obtain different sizes and shapes that can be easily functionalized with many kinds of molecules such as antibodies, proteins, probes, and lipids. In addition, AuNPs showed high biocompatibility making them useful tool in medicine field. We thus reviewed here the most relevant evidence on AuNPs as effective way to detect the presence of SARS-CoV-2 antigens. We trust future diagnostic efforts must take this 'old-fashioned' nanotechnology tool into consideration for the development and commercialization of reliable and feasible detection kits.

JTD Keywords: Aggregation, Antibodies, Assay, Covid-19, Diagnosis, Enhanced raman-scattering, Gold nanoparticles, Immunoassay, Pandemic disease, Physicochemical properties, Rapid detection, Sars-cov-2, Sensors, Surface-plasmon resonance, Therapy


Ramos, E., Pardo, W. A., Mir, M., Samitier, J., (2017). Dependence of carbon nanotubes dispersion kinetics on surfactants Nanotechnology 28, (13), 135702

Carbon nanotubes (CNTs) have been the subject of many studies due to their unique structure and desirable properties. However, the ability to solubilize and separate single CNTs from the bundles they form is still a challenge that needs to be overcome in order to extend their applications in the field of Nanotechnology. Covalent interactions are designed to modify CNTs surface and so prevent agglomeration. Though, this method alters the structures and intrinsic properties of CNTs. In the present work, noncovalent approaches to functionalize and solubilize CNTs are studied in detail. A dispersion kinetic study was performed to characterize the ability of different type of surfactants (non-ionic, anionic, cationic and biopolymer) to unzip CNT bundles. The dispersion kinetic study performed depicts the distinct CNTs bundles unzipping behavior of the different type of surfactants and the results elucidate specific wavelengths in relation with the degree of CNT clustering, which provides new tools for a deeper understanding and characterization of CNTs. Small angle x-ray scattering and transmission electron microscopy results are in agreement with UV-vis-NIR observations, revealing perfectly monodispersed CNTs for the biopolymer and cationic surfactant.

JTD Keywords: Dispersion, DNA, Single-walled carbon nanotubes (SWCNTs), Small angle x-ray scattering (SAXS), Sodium dodecyl sulfate (SDS), Surfactant, Triton X-100


Gumí-Audenis, B., Carlà, F., Vitorino, M. V., Panzarella, A., Porcar, L., Boilot, M., Guerber, S., Bernard, P., Rodrigues, M. S., Sanz, F., Giannotti, M. I., Costa, L., (2015). Custom AFM for X-ray beamlines: in situ biological investigations under physiological conditions Journal of Synchrotron Radiation , 22, 1364-1371

A fast atomic force microscope (AFM) has been developed that can be installed as a sample holder for grazing-incidence X-ray experiments at solid/gas or solid/liquid interfaces. It allows a wide range of possible investigations, including soft and biological samples under physiological conditions (hydrated specimens). The structural information obtained using the X-rays is combined with the data gathered with the AFM (morphology and mechanical properties), providing a unique characterization of the specimen and its dynamics in situ during an experiment. In this work, lipid monolayers and bilayers in air or liquid environment have been investigated by means of AFM, both with imaging and force spectroscopy, and X-ray reflectivity. In addition, this combination allows the radiation damage induced by the beam on the sample to be studied, as has been observed on DOPC and DPPC supported lipid bilayers under physiological conditions.

JTD Keywords: In situ atomic force microscopy, Grazing-incidence scattering and reflectivity, Radiation damage, Model lipid membranes


Hosta, L., Pla, M., Arbiol, J., Lopez-Iglesias, C., Samitier, J., Cruz, L. J., Kogan, M. J., Albericio, F., (2009). Conjugation of Kahalalide F with gold nanoparticles to enhance in vitro antitumoral activity Bioconjugate Chemistry , 20, (1), 138-146

Two Cys-containing analogues of the anticancer drug Kahalalide F are synthesized and conjugated to 20 and 40 nm gold nanoparticles (GNPs). The resulting complexes are characterized by different analytical techniques to confirm the attachment of peptide to the GNPs. The self-assembly capacity of a peptide dramatically influences the final ratio number of molecules per nanoparticle, saturating the nanoparticle surface and prompting multilayered capping on the surface. In such way, the nanoparticle could act as a concentrator for the delivery of drugs, thereby increasing bioactivity. The GNP sizes and the conjugation have influence on the biological activities. Kahalalide F analogues conjugated with GNPs are located subcellularly at lysosome-like bodies, which may be related to the action mechanism of Kahalalide F. The results suggest that the selective delivery and activity of Kahalalide F analogues can be improved by conjugating the peptides to GNPs.

JTD Keywords: Electrical detection, Cellular uptake, Drug-delivery, Cancer-cells, Peptide, Size, Surface, Absorption, Scattering, Therapy