by Keyword: Support vector machines

By year:[ 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Lozano, M., Fiz, J. A., Jané, R., (2016). Automatic differentiation of normal and continuous adventitious respiratory sounds using ensemble empirical mode decomposition and instantaneous frequency IEEE Journal of Biomedical and Health Informatics 20, (2), 486-497

Differentiating normal from adventitious respiratory sounds (RS) is a major challenge in the diagnosis of pulmonary diseases. Particularly, continuous adventitious sounds (CAS) are of clinical interest because they reflect the severity of certain diseases. This study presents a new classifier that automatically distinguishes normal sounds from CAS. It is based on the multi-scale analysis of instantaneous frequency (IF) and envelope (IE) calculated after ensemble empirical mode decomposition (EEMD). These techniques have two major advantages over previous techniques: high temporal resolution is achieved by calculating IF-IE and a priori knowledge of signal characteristics is not required for EEMD. The classifier is based on the fact that the IF dispersion of RS signals markedly decreases when CAS appear in respiratory cycles. Therefore, CAS were detected by using a moving window to calculate the dispersion of IF sequences. The study dataset contained 1494 RS segments extracted from 870 inspiratory cycles recorded from 30 patients with asthma. All cycles and their RS segments were previously classified as containing normal sounds or CAS by a highly experienced physician to obtain a gold standard classification. A support vector machine classifier was trained and tested using an iterative procedure in which the dataset was randomly divided into training (65%) and testing (35%) sets inside a loop. The SVM classifier was also tested on 4592 simulated CAS cycles. High total accuracy was obtained with both recorded (94.6% ± 0.3%) and simulated (92.8% ± 3.6%) signals. We conclude that the proposed method is promising for RS analysis and classification.

Keywords: Diseases, Dispersion, Empirical mode decomposition, Feature extraction, Informatics, Support vector machines

Argerich, S., Herrera, S., Benito, S., Giraldo, J., (2016). Evaluation of periodic breathing in respiratory flow signal of elderly patients using SVM and linear discriminant analysis Engineering in Medicine and Biology Society (EMBC) 38th Annual International Conference of the IEEE , IEEE (Orlando, USA) , 4276-4279

Aging population is a major concern that is reflected in the increase of chronic diseases. Heart Failure (HF) is one of the most common chronic diseases of elderly people that is punctuated with acute episodes, which result in hospitalization. The periodic modulation of the amplitude of the breathing pattern is proved to be one of the multiple symptoms of an acute episode, and thus, the features extracted from its characterization contribute in the improvement of the first diagnosis of the clinical practice. The main objective of this study is to evaluate if the features extracted from the breathing pattern along with common clinical variables are reliable enough to detect Periodic Breathing (PB). A dataset of 44 elderly patients containing clinical information and a short record of electrocardiogram and respiratory flow signal was used to train two machine learning classification methods: Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA). All the available clinical parameters within the dataset along with the parameters characterizing the respiratory pattern were used to classify the observations into two groups. SVM classification was optimized and performed using a = -8 and C = 10.04 giving an accuracy of 88.2 % sensitivity of 90 % and specificity of 85.7 % Similar results were achieved with LDA classifying with an accuracy of 82.4 %, a sensitivity of 81.8% and specificity of 83.3 % PB has been accurately detected using both classifiers.

Keywords: Support vector machines, Feature extraction, Training, Senior citizens, Standards, Training data, Hospitals

Giraldo, B. F., Rodriguez, J., Caminal, P., Bayes-Genis, A., Voss, A., (2015). Cardiorespiratory and cardiovascular interactions in cardiomyopathy patients using joint symbolic dynamic analysis Engineering in Medicine and Biology Society (EMBC) 37th Annual International Conference of the IEEE , IEEE (Milan, Italy) , 306-309

Cardiovascular diseases are the first cause of death in developed countries. Using electrocardiographic (ECG), blood pressure (BP) and respiratory flow signals, we obtained parameters for classifying cardiomyophaty patients. 42 patients with ischemic (ICM) and dilated (DCM) cardiomyophaties were studied. The left ventricular ejection fraction (LVEF) was used to stratify patients with low risk (LR: LVEF>35%, 14 patients) and high risk (HR: LVEF≤ 35%, 28 patients) of heart attack. RR, SBP and TTot time series were extracted from the ECG, BP and respiratory flow signals, respectively. The time series were transformed to a binary space and then analyzed using Joint Symbolic Dynamic with a word length of three, characterizing them by the probability of occurrence of the words. Extracted parameters were then reduced using correlation and statistical analysis. Principal component analysis and support vector machines methods were applied to characterize the cardiorespiratory and cardiovascular interactions in ICM and DCM cardiomyopaties, obtaining an accuracy of 85.7%.

Keywords: Blood pressure, Electrocardiography, Joints, Kernel, Principal component analysis, Support vector machines, Time series analysis

Chaparro, J. A., Giraldo, B. F., (2014). Power index of the inspiratory flow signal as a predictor of weaning in intensive care units Engineering in Medicine and Biology Society (EMBC) 36th Annual International Conference of the IEEE , IEEE (Chicago, USA) , 78-81

Disconnection from mechanical ventilation, called the weaning process, is an additional difficulty in the management of patients in intensive care units (ICU). Unnecessary delays in the discontinuation process and a weaning trial that is undertaken too early are undesirable. In this study, we propose an extubation index based on the power of the respiratory flow signal (Pi). A total of 132 patients on weaning trials were studied: 94 patients with successful trials (group S) and 38 patients who failed to maintain spontaneous breathing and were reconnected (group F). The respiratory flow signals were processed considering the following three stages: a) zero crossing detection of the inspiratory phase, b) inflection point detection of the flow curve during the inspiratory phase, and c) calculation of the signal power on the time instant indicated by the inflection point. The zero crossing detection was performed using an algorithm based on thresholds. The inflection points were marked considering the zero crossing of the second derivative. Finally, the inspiratory power was calculated from the energy contained over the finite time interval (between the instant of zero crossing and the inflection point). The performance of this parameter was evaluated using the following classifiers: logistic regression, linear discriminant analysis, the classification and regression tree, Naive Bayes, and the support vector machine. The best results were obtained using the Bayesian classifier, which had an accuracy, sensitivity and specificity of 87%, 90% and 81% respectively.

Keywords: Bayes methods, Bayesian classifier, Indexes, Logistics, Niobium, Regression tree analysis, Support vector machines, Ventilation

Garde, Ainara, Voss, Andreas, Caminal, Pere, Benito, Salvador, Giraldo, Beatriz F., (2013). SVM-based feature selection to optimize sensitivity-specificity balance applied to weaning Computers in Biology and Medicine 43, (5), 533-540

Classification algorithms with unbalanced datasets tend to produce high predictive accuracy over the majority class, but poor predictive accuracy over the minority class. This problem is very common in biomedical data mining. This paper introduces a Support Vector Machine (SVM)-based optimized feature selection method, to select the most relevant features and maintain an accurate and well-balanced sensitivity–specificity result between unbalanced groups. A new metric called the balance index (B) is defined to implement this optimization. The balance index measures the difference between the misclassified data within each class. The proposed optimized feature selection is applied to the classification of patients' weaning trials from mechanical ventilation: patients with successful trials who were able to maintain spontaneous breathing after 48 h and patients who failed to maintain spontaneous breathing and were reconnected to mechanical ventilation after 30 min. Patients are characterized through cardiac and respiratory signals, applying joint symbolic dynamic (JSD) analysis to cardiac interbeat and breath durations. First, the most suitable parameters (C+,C−,

Keywords: Support vector machines, Balance index, Sensitivity-specificity balance, Cardiorespiratory interaction, Joint symbolic dynamics, Feature selection, Weaning procedure

Giraldo, B. F., Chaparro, J. A., Caminal, P., Benito, S., (2013). Characterization of the respiratory pattern variability of patients with different pressure support levels Engineering in Medicine and Biology Society (EMBC) 35th Annual International Conference of the IEEE , IEEE (Osaka, Japan) , 3849-3852

One of the most challenging problems in intensive care is still the process of discontinuing mechanical ventilation, called weaning process. Both an unnecessary delay in the discontinuation process and a weaning trial that is undertaken too early are undesirable. In this study, we analyzed respiratory pattern variability using the respiratory volume signal of patients submitted to two different levels of pressure support ventilation (PSV), prior to withdrawal of the mechanical ventilation. In order to characterize the respiratory pattern, we analyzed the following time series: inspiratory time, expiratory time, breath duration, tidal volume, fractional inspiratory time, mean inspiratory flow and rapid shallow breathing. Several autoregressive modeling techniques were considered: autoregressive models (AR), autoregressive moving average models (ARMA), and autoregressive models with exogenous input (ARX). The following classification methods were used: logistic regression (LR), linear discriminant analysis (LDA) and support vector machines (SVM). 20 patients on weaning trials from mechanical ventilation were analyzed. The patients, submitted to two different levels of PSV, were classified as low PSV and high PSV. The variability of the respiratory patterns of these patients were analyzed. The most relevant parameters were extracted using the classifiers methods. The best results were obtained with the interquartile range and the final prediction errors of AR, ARMA and ARX models. An accuracy of 95% (93% sensitivity and 90% specificity) was obtained when the interquartile range of the expiratory time and the breath duration time series were used a LDA model. All classifiers showed a good compromise between sensitivity and specificity.

Keywords: autoregressive moving average processes, feature extraction, medical signal processing, patient care, pneumodynamics, signal classification, support vector machines, time series, ARX, autoregressive modeling techniques, autoregressive models with exogenous input, autoregressive moving average model, breath duration time series, classification method, classifier method, discontinuing mechanical ventilation, expiratory time, feature extraction, final prediction errors, fractional inspiratory time, intensive care, interquartile range, linear discriminant analysis, logistic regression analysis, mean inspiratory flow, patient respiratory volume signal, pressure support level, pressure support ventilation, rapid shallow breathing, respiratory pattern variability characterization, support vector machines, tidal volume, weaning trial, Analytical models, Autoregressive processes, Biological system modeling, Estimation, Support vector machines, Time series analysis, Ventilation

Chaparro, J.A., Giraldo, B.F., Caminal, P., Benito, S., (2012). Performance of respiratory pattern parameters in classifiers for predict weaning process Engineering in Medicine and Biology Society (EMBC) 34th Annual International Conference of the IEEE , IEEE (San Diego, USA) , 4349-4352

Weaning trials process of patients in intensive care units is a complex clinical procedure. 153 patients under extubation process (T-tube test) were studied: 94 patients with successful trials (group S), 38 patients who failed to maintain spontaneous breathing and were reconnected (group F), and 21 patients with successful test but that had to be reintubated before 48 hours (group R). The respiratory pattern of each patient was characterized through the following time series: inspiratory time (TI), expiratory time (TE), breathing cycle duration (TTot), tidal volume (VT), inspiratory fraction (TI/TTot), half inspired flow (VT/TI), and rapid shallow index (f/VT), where f is respiratory rate. Using techniques as autoregressive models (AR), autoregressive moving average models (ARMA) and autoregressive models with exogenous input (ARX), the most relevant parameters of the respiratory pattern were obtained. We proposed the evaluation of these parameters using classifiers as logistic regression (LR), linear discriminant analysis (LDA), support vector machines (SVM) and classification and regression tree (CART) to discriminate between patients from groups S, F and R. An accuracy of 93% (98% sensitivity and 82% specificity) has been obtained using CART classification.

Keywords: Accuracy, Indexes, Logistics, Regression tree analysis, Support vector machines, Time series analysis, Autoregressive moving average processes, Medical signal processing, Pattern classification, Pneumodynamics, Regression analysis, Sensitivity, Signal classification, Support vector machines, Time series, SVM, T-tube testing, Autoregressive models-with-exogenous input, Autoregressive moving average models, Breathing cycle duration, Classification-and-regression tree, Expiratory time, Extubation process, Half inspired flow, Inspiratory fraction, Inspiratory time, Intensive care units, Linear discriminant analysis, Logistic regression, Rapid shallow index, Respiratory pattern parameter performance, Sensitivity, Spontaneous breathing, Support vector machines, Tidal volume, Time 48 hr, Time series, Weaning process classifiers

Garde, A., Schroeder, R., Voss, A., Caminal, P., Benito, S., Giraldo, B., (2010). Patients on weaning trials classified with support vector machines Physiological Measurement 31, (7), 979-993

The process of discontinuing mechanical ventilation is called weaning and is one of the most challenging problems in intensive care. An unnecessary delay in the discontinuation process and an early weaning trial are undesirable. This study aims to characterize the respiratory pattern through features that permit the identification of patients' conditions in weaning trials. Three groups of patients have been considered: 94 patients with successful weaning trials, who could maintain spontaneous breathing after 48 h ( GSucc ); 39 patients who failed the weaning trial ( GFail ) and 21 patients who had successful weaning trials, but required reintubation in less than 48 h ( GRein ). Patients are characterized by their cardiorespiratory interactions, which are described by joint symbolic dynamics (JSD) applied to the cardiac interbeat and breath durations. The most discriminating features in the classification of the different groups of patients ( GSucc , GFail and GRein ) are identified by support vector machines (SVMs). The SVM-based feature selection algorithm has an accuracy of 81% in classifying GSucc versus the rest of the patients, 83% in classifying GRein versus GSucc patients and 81% in classifying GRein versus the rest of the patients. Moreover, a good balance between sensitivity and specificity is achieved in all classifications.

Keywords: Mechanical ventilation, Weaning, Support vector machines, Joint symbolic dynamics

Tarzan-Lorente, M., Gutierrez-Galvez, A., Martinez, D., Marco, S., (2010). A biologically inspired associative memory for artificial olfaction Practica 2010 International Joint Conference on Neural Networks (IJCNN 2010) , IEEE, Piscataway, NJ, USA (Barcelona, Spain) , 6 pp.

In this paper, we propose a biologically inspired architecture for a Hopfield-like associative memory applied to artificial olfaction. The proposed algorithm captures the projection between two neural layers of the insect olfactory system (Antennal Lobe and Mushroom Body) with a kernel based projection. We have tested its classification performance as a function of the size of the training set and the time elapsed since training and compared it with that obtained with a Support Vector Machine.

Keywords: Biocomputing, Chemioception, Content-addressable storage, Hopfield neural nets, Support vector machines

Seeck, A., Garde, A., Schuepbach, M., Giraldo, B., Sanz, E., Huebner, T., Caminal, P., Voss, A., (2009). Diagnosis of ischemic heart disease with cardiogoniometry - linear discriminant analysis versus support vector machines IFMBE Proceedings 4th European Conference of the International Federation for Medical and Biological Engineering (ed. Vander Sloten, Jos, Verdonck, Pascal, Nyssen, Marc, Haueisen, Jens), Springer Berlin Heidelberg (Berlin, Germany) 22, 389-392

The Ischemic Heart Disease (IHD) is characterized by an insufficient supply with blood of the myocardium usually caused by an artherosclerotic disease of the coronary arteries (coronary artery disease CAD). The IHD and its consequences have become a leading problem in the industrialized nations. The aim of this study was to evaluate a new diagnosing method, the cardiogoniometry, using two different classifying techniques: the method of linear discriminant function analysis (LDA) and the method of Support Vector Machines (SVM). Data of a group of 109 female subjects (62 healthy, 47 with IHD) were analyzed on the basis of extracted parameters from the three-dimensional vector loops of the heart. The LDA achieved an accuracy of 83,5% (Sensitivity 78,7%, Specificity 87,1%), whereas the SVM achieved an accuracy of 86% (Sensitivity 80,5%, Specificity 89,8%). It could be shown that cardiogoniometry, an electrophysiological diagnostic method performed at rest, detects variables that are helpful in identifying ischemic heart disease. As it is easy to apply, non-invasive, and provides an automated interpretation it may become an inexpensive addition to the cardiologic diagnostic armamentarium, possibly useful for early diagnosis of IHD or CAD, as well as in patients who do not tolerate exercise testing. It was also proven that by applying Support Vector Machines an increased diagnostic precision in comparison to the conventional discriminant function analysis can be achieved.

Keywords: Cardiogoniometry, Support Vector Machines, Nonlinear classifier, Linear discriminant analysis, Vector loop

Comments are closed