Staff member


Samuel Sánchez Ordóñez

Group Leader / ICREA Research Professor
Smart Nano-Bio-Devices
ssanchez@ibecbarcelona.eu
+34 934 020 558
Staff member publications

Katuri, Jaideep, Ma, Xing, Stanton, Morgan M., Sánchez, Samuel, (2017). Designing micro- and nanoswimmers for specific applications Accounts of Chemical Research 50, (1), 2-11

Conspectus: Self-propelled colloids have emerged as a new class of active matter over the past decade. These are micrometer sized colloidal objects that transduce free energy from their surroundings and convert it to directed motion. The self-propelled colloids are in many ways, the synthetic analogues of biological self-propelled units such as algae or bacteria. Although they are propelled by very different mechanisms, biological swimmers are typically powered by flagellar motion and synthetic swimmers are driven by local chemical reactions, they share a number of common features with respect to swimming behavior. They exhibit run-and-tumble like behavior, are responsive to environmental stimuli, and can even chemically interact with nearby swimmers. An understanding of self-propelled colloids could help us in understanding the complex behaviors that emerge in populations of natural microswimmers. Self-propelled colloids also offer some advantages over natural microswimmers, since the surface properties, propulsion mechanisms, and particle geometry can all be easily modified to meet specific needs.From a more practical perspective, a number of applications, ranging from environmental remediation to targeted drug delivery, have been envisioned for these systems. These applications rely on the basic functionalities of self-propelled colloids: directional motion, sensing of the local environment, and the ability to respond to external signals. Owing to the vastly different nature of each of these applications, it becomes necessary to optimize the design choices in these colloids. There has been a significant effort to develop a range of synthetic self-propelled colloids to meet the specific conditions required for different processes. Tubular self-propelled colloids, for example, are ideal for decontamination processes, owing to their bubble propulsion mechanism, which enhances mixing in systems, but are incompatible with biological systems due to the toxic propulsion fuel and the generation of oxygen bubbles. Spherical swimmers serve as model systems to understand the fundamental aspects of the propulsion mechanism, collective behavior, response to external stimuli, etc. They are also typically the choice of shape at the nanoscale due to their ease of fabrication. More recently biohybrid swimmers have also been developed which attempt to retain the advantages of synthetic colloids while deriving their propulsion from biological swimmers such as sperm and bacteria, offering the means for biocompatible swimming. In this Account, we will summarize our effort and those of other groups, in the design and development of self-propelled colloids of different structural properties and powered by different propulsion mechanisms. We will also briefly address the applications that have been proposed and, to some extent, demonstrated for these swimmer designs.


Stanton, Morgan M., Sánchez, Samuel, (2017). Pushing bacterial biohybrids to In Vivo Applications Trends in Biotechnology In Press Corrected Proof

Bacterial biohybrids use the energy of bacteria to manipulate synthetic materials with the goal of solving biomedical problems at the micro- and nanoscale. We explore current in vitro studies of bacterial biohybrids, the first attempts at in vivo biohybrid research, and problems to be addressed for the future.

Keywords: Bacteria, Biohybrid, Microswimmers, Micromotors, Drug delivery


Stanton, M. M., Park, B. W., Miguel-López, A., Ma, X., Sitti, M., Sánchez, S., (2017). Biohybrid microtube swimmers driven by single captured bacteria Small 13, (19), 1603679

Bacteria biohybrids employ the motility and power of swimming bacteria to carry and maneuver microscale particles. They have the potential to perform microdrug and cargo delivery in vivo, but have been limited by poor design, reduced swimming capabilities, and impeded functionality. To address these challenge, motile Escherichia coli are captured inside electropolymerized microtubes, exhibiting the first report of a bacteria microswimmer that does not utilize a spherical particle chassis. Single bacterium becomes partially trapped within the tube and becomes a bioengine to push the microtube though biological media. Microtubes are modified with "smart" material properties for motion control, including a bacteria-attractant polydopamine inner layer, addition of magnetic components for external guidance, and a biochemical kill trigger to cease bacterium swimming on demand. Swimming dynamics of the bacteria biohybrid are quantified by comparing "length of protrusion" of bacteria from the microtubes with respect to changes in angular autocorrelation and swimmer mean squared displacement. The multifunctional microtubular swimmers present a new generation of biocompatible micromotors toward future microbiorobots and minimally invasive medical applications.

Keywords: Biohybrids, E. coli, Micromotors, Microswimmers, Polydopamine


Vilela, D., Stanton, M. M., Parmar, J., Sánchez, S., (2017). Microbots decorated with silver nanoparticles kill bacteria in aqueous media ACS Applied Materials and Interfaces 9, (27), 22093-22100

Water contamination is one of the most persistent problems of public health. Resistance of some pathogens to conventional disinfectants can require the combination of multiple disinfectants or increased disinfectant doses, which may produce harmful byproducts. Here, we describe an efficient method for disinfecting Escherichia coli and removing the bacteria from contaminated water using water self-propelled Janus microbots decorated with silver nanoparticles (AgNPs). The structure of a spherical Janus microbot consists of a magnesium (Mg) microparticle as a template that also functions as propulsion source by producing hydrogen bubbles when in contact with water, an inner iron (Fe) magnetic layer for their remote guidance and collection, and an outer AgNP-coated gold (Au) layer for bacterial adhesion and improving bactericidal properties. The active motion of microbots increases the chances of the contact of AgNPs on the microbot surface with bacteria, which provokes the selective Ag+ release in their cytoplasm, and the microbot self-propulsion increases the diffusion of the released Ag+ ions. In addition, the AgNP-coated Au cap of the microbots has a dual capability of capturing bacteria and then killing them. Thus, we have demonstrated that AgNP-coated Janus microbots are capable of efficiently killing more than 80% of E. coli compared with colloidal AgNPs that killed only less than 35% of E. coli in contaminated water solutions in 15 min. After capture and extermination of bacteria, magnetic properties of the cap allow collection of microbots from water along with the captured dead bacteria, leaving water with no biological contaminants. The presented biocompatible Janus microbots offer an encouraging method for rapid disinfection of water.

Keywords: Bactericidal, Magnetic control, Micromotors, Microswimmers, Self-propulsion, Silver nanoparticles


Ma, Xing, Sánchez, Samuel, (2017). Self-propelling micro-nanorobots: challenges and future perspectives in nanomedicine Nanomedicine Epub ahead of print

Simmchen, Juliane, Baeza, Alejandro, Miguel-Lopez, Albert, Stanton, Morgan M., Vallet-Regi, Maria, Ruiz-Molina, Daniel, Sánchez, Samuel, (2017). Dynamics of novel photoactive AgCl microstars and their environmental applications ChemNanoMat 3, (1), 65-71

In the field of micromotors many efforts are taken to find a substitute for peroxide as fuel. While most approaches turn towards other toxic high energy chemicals such as hydrazine, we introduce an energy source that is widely used in nature: light. Light is an ideal source of energy and some materials, such as AgCl, have the inherent property to transform light energy for chemical processes, which can be used to achieve propulsion. In the case of silver chloride, one observed process after light exposure is surface modification which leads to the release of ions generating chemo-osmotic gradients. Here we present endeavours to use those processes to propel uniquely shaped micro objects of micro star morphology with a high surface to volume ratio, study their dynamics and present approaches to go towards real environmental applications.

Keywords: Self-propellers, Silver chloride, Environmental applications, Photoactive colloids, Anti bacterial


Ma, X., Sánchez, S., (2017). Bio-catalytic mesoporous Janus nano-motors powered by catalase enzyme Tetrahedron 73, (33), 4883-4886

Enzyme triggered bio-catalytic reactions convert chemical energy into mechanical force to power micro/nano-machines. Though there have been reports about enzymes powered micro/nano-motors, enzymatic Janus nano-motor smaller than 100 nm has not been reported yet. Here, we prepared an enzyme powered Janus nano-motor by half-capping a thin layer of silicon dioxide (4 nm SiO2) onto a mesoporous silica nanoparticle (MSNP) of 90 nm, enabling asymmetry to the nano-architecture. The nano-motors are chemically powered by the decomposition of H2O2 triggered by the enzyme catalase located at one face of the nanoparticles. The self-propulsion is characterized by dynamic light scattering (DLS) and optical microscopy. The apparent diffusion coefficient was enhanced by 150% compared to their Brownian motion at low H2O2 concentration (i.e. below 3 wt%). Mesoporous nano-motors might serve as active drug delivery nano-systems in future biomedical applications such as intracellular drug delivery.

Keywords: Enzyme catalysis, Janus particles, Mesoporous silica, Nano-motors, Nanomachine, Self-propulsion


Ma, Xing, Horteläo, Ana C., Patiño, Tania, Sánchez, Samuel, (2016). Enzyme catalysis to power micro/nanomachines ACS Nano 10, (10), 9111–9122

Enzymes play a crucial role in many biological processes which require harnessing and converting free chemical energy into kinetic forces in order to accomplish tasks. Enzymes are considered to be molecular machines, not only because of their capability of energy conversion in biological systems but also because enzymatic catalysis can result in enhanced diffusion of enzymes at a molecular level. Enlightened by nature’s design of biological machinery, researchers have investigated various types of synthetic micro/nanomachines by using enzymatic reactions to achieve self-propulsion of micro/nanoarchitectures. Yet, the mechanism of motion is still under debate in current literature. Versatile proof-of-concept applications of these enzyme-powered micro/nanodevices have been recently demonstrated. In this review, we focus on discussing enzymes not only as stochastic swimmers but also as nanoengines to power self-propelled synthetic motors. We present an overview on different enzyme-powered micro/nanomachines, the current debate on their motion mechanism, methods to provide motion and speed control, and an outlook of the future potentials of this multidisciplinary field.


Ma, Xing, Wang, Xu, Hahn, Kersten, Sánchez, Samuel, (2016). Motion control of urea powered biocompatible hollow microcapsules ACS Nano 10, (3), 3597-3605

The quest for biocompatible micro-swimmers powered by compatible fuel and with full motion control over their self-propulsion is a long-standing challenge in the field of active matter and microrobotics. Here, we present an active hybrid microcapsule motor based on Janus hollow mesoporous silica micro particles (JHP) powered by the bio-catalytic decomposition of urea at physiological concentrations. The directional self-propelled motion lasts longer than 10 minutes with an average velocity of up to 5 body lengths per second. Additionally, we control the velocity of the micro-motor by chemically inhibiting and reactivating the enzymatic activity of urease. The incorporation of magnetic material within the Janus structure provides remote magnetic control on the movement direction. Furthermore, the mesoporous/hollow structure can load both small molecules and larger particles up to hundreds of nano-meters, making the hybrid micro-motor an active and controllable drug delivery micro-system.


Ma, Xing, Jang, Seungwook, Popescu, Mihail N., Uspal, William E., Miguel-López, Albert, Hahn, Kersten, Kiam, Dong-Pyo, Sánchez, Samuel, (2016). Reversed Janus micro/nanomotors with internal chemical engine ACS Nano 10, (9), 8751-8759

Self-motile Janus colloids are important for enabling a wide variety of microtechnology applications as well as for improving our understanding of the mechanisms of motion of artificial micro- and nanoswimmers. We present here micro/nanomotors which possess a reversed Janus structure of an internal catalytic “chemical engine”. The catalytic material (here platinum (Pt)) is embedded within the interior of the mesoporous silica (mSiO2)-based hollow particles and triggers the decomposition of H2O2 when suspended in an aqueous peroxide (H2O2) solution. The pores/gaps at the noncatalytic (Pt) hemisphere allow the exchange of chemical species in solution between the exterior and the interior of the particle. By varying the diameter of the particles, we observed size-dependent motile behavior in the form of enhanced diffusion for 500 nm particles, and self-phoretic motion, toward the nonmetallic part, for 1.5 and 3


Ma, Xing, Hortelao, Ana C., Miguel-López, Albert, Sánchez, Samuel, (2016). Bubble-free propulsion of ultrasmall tubular nanojets powered by biocatalytic reactions Journal of the American Chemical Society 138, (42), 13782–13785

The motion of self-propelled tubular micro- and nanojets has so far been achieved by bubble propulsion, e.g., O2 bubbles formed by catalytic decomposition of H2O2, which renders future biomedical applications inviable. An alternative self-propulsion mechanism for tubular engines on the nanometer scale is still missing. Here, we report the fabrication and characterization of bubble-free propelled tubular nanojets (as small as 220 nm diameter), powered by an enzyme-triggered biocatalytic reaction using urea as fuel. We studied the translational and rotational dynamics of the nanojets as functions of the length and location of the enzymes. Introducing tracer nanoparticles into the system, we demonstrated the presence of an internal flow that extends into the external fluid via the cavity opening, leading to the self-propulsion. One-dimensional nanosize, longitudinal self-propulsion, and biocompatibility make the tubular nanojets promising for future biomedical applications.


Vilela, Diana, Parmar, Jemish, Zeng, Yongfei, Zhao, Yanli, Sánchez, Samuel, (2016). Graphene based microbots for toxic heavy metal removal and recovery from water Nano Letters 16, (4), 2860-2866

Heavy metal contamination in water is a serious risk to the public health and other life forms on earth. Current research in nanotechnology is developing new nano-systems and nanomaterials for fast and efficient removal of pollutants and heavy metals from water. Here, we report graphene oxide-based microbots (GOx-microbots) as active self-propelled systems for the capture, transfer and removal of a heavy metal -lead-, and its subsequent recovery for recycling purposes. Microbots? structure consists of nano-sized multilayers of graphene oxide, nickel and platinum which provide different functionalities. The outer layer of graphene oxide captures lead on the surface, the inner layer of platinum function as the engine decomposing hydrogen peroxide fuel for self-propulsion, whilst the middle layer of nickel enables external magnetic control of the microbots. Mobile GOx-microbots remove lead ten times more efficiently than non-mobile GOx-microbots, cleaning water from 1000 ppb down to below 50 ppb in 60 min. Furthermore, after chemical detachment of lead from the surface of GOx-microbots, the microbots can be reused. Finally, we demonstrate the magnetic control of the GOx-microbots inside a microfluidic system as a proof-of-concept for automatic microbots-based system to remove and recover heavy metals. Heavy metal contamination in water is a serious risk to the public health and other life forms on earth. Current research in nanotechnology is developing new nano-systems and nanomaterials for fast and efficient removal of pollutants and heavy metals from water. Here, we report graphene oxide-based microbots (GOx-microbots) as active self-propelled systems for the capture, transfer and removal of a heavy metal -lead-, and its subsequent recovery for recycling purposes. Microbots? structure consists of nano-sized multilayers of graphene oxide, nickel and platinum which provide different functionalities. The outer layer of graphene oxide captures lead on the surface, the inner layer of platinum function as the engine decomposing hydrogen peroxide fuel for self-propulsion, whilst the middle layer of nickel enables external magnetic control of the microbots. Mobile GOx-microbots remove lead ten times more efficiently than non-mobile GOx-microbots, cleaning water from 1000 ppb down to below 50 ppb in 60 min. Furthermore, after chemical detachment of lead from the surface of GOx-microbots, the microbots can be reused. Finally, we demonstrate the magnetic control of the GOx-microbots inside a microfluidic system as a proof-of-concept for automatic microbots-based system to remove and recover heavy metals.


Parmar, J., Vilela, D., Pellicer, E., Esqué-de los Ojos, D., Sort, J., Sánchez, S., (2016). Reusable and long-lasting active microcleaners for heterogeneous water remediation Advanced Functional Materials 26, (23), 4152-4161

Self-powered micromachines are promising tools for future environmental remediation technology. Waste-water treatment and water reuse is an essential part of environmental sustainability. Herein, we present reusable Fe/Pt multi-functional active microcleaners that are capable of degrading organic pollutants (malachite green and 4-nitrophenol) by generated hydroxyl radicals via a Fenton-like reaction. Various different properties of microcleaners, such as the effect of their size, short-term storage, long-term storage, reusability, continuous swimming capability, surface composition, and mechanical properties, are studied. It is found that these microcleaners can continuously swim for more than 24 hours and can be stored more than 5 weeks during multiple cleaning cycles. The produced microcleaners can also be reused, which reduces the cost of the process. During the reuse cycles the outer iron surface of the Fe/Pt microcleaners generates the in-situ, heterogeneous Fenton catalyst and releases a low concentration of iron into the treated water, while the mechanical properties also appear to be improved due to both its surface composition and structural changes. The microcleaners are characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), nanoindentation, and finite-element modeling (FEM).

Keywords: Catalysts, Heterogeneous catalysis, Microcleaners, Micromotors, Nanorobots, Wastewater treatment


Simmchen, J., Katuri, J., Uspal, W. E., Popescu, M. N., Tasinkevych, M., Sánchez, S., (2016). Topographical pathways guide chemical microswimmers Nature Communications 7, 10598

Achieving control over the directionality of active colloids is essential for their use in practical applications such as cargo carriers in microfluidic devices. So far, guidance of spherical Janus colloids was mainly realized using specially engineered magnetic multilayer coatings combined with external magnetic fields. Here we demonstrate that step-like submicrometre topographical features can be used as reliable docking and guiding platforms for chemically active spherical Janus colloids. For various topographic features (stripes, squares or circular posts), docking of the colloid at the feature edge is robust and reliable. Furthermore, the colloids move along the edges for significantly long times, which systematically increase with fuel concentration. The observed phenomenology is qualitatively captured by a simple continuum model of self-diffusiophoresis near confining boundaries, indicating that the chemical activity and associated hydrodynamic interactions with the nearby topography are the main physical ingredients behind the observed behaviour.


Maggi, Claudio, Simmchen, Juliane, Saglimbeni, Filippo, Katuri, Jaideep, Dipalo, Michele, De Angelis, Francesco, Sánchez, Samuel, Di Leonardo, Roberto, (2016). Self-assembly of micromachining systems powered by Janus micromotors Small 12, (4), 446-451

Janus particles can self-assemble around microfabricated gears in reproducible configurations with a high degree of spatial and orientational order. The final configuration maximizes the torque applied on the rotor leading to a unidirectional and steady rotating motion. The interplay between geometry and dynamical behavior leads to the self-assembly of Janus micromotors starting from randomly distributed particles.

Keywords: Active catalytic particles, Microgears, Micromachines, Janus particles, Self-assembly, Self-propulsion


Katuri, J., Seo, K. D., Kim, D. S., Sánchez, S., (2016). Artificial micro-swimmers in simulated natural environments Lab on a Chip 16, (7), 1101-1105

Microswimmers, such as bacteria, are known to show different behaviours depending on their local environment. They identify spatial chemical gradients to find nutrient rich areas (chemotaxis) and interact with shear flows to accumulate in high shear regions. Recently, artificial microswimmers have been developed which mimic their natural counterparts in many ways. One of the exciting topics in this field is to study these artificial motors in several natural settings like the ones bacteria interact with. In this Focus article, we summarize recent observations of artificial swimmers in chemical gradients, shear flows and other interesting natural environments simulated in the lab using microfluidics and nanotechnology.


Vilela, Diana, Romeo, Agostino, Sánchez, Samuel, (2016). Flexible sensors for biomedical technology Lab on a Chip 16, (3), 402-408

Flexible sensing devices have gained a great deal of attention among the scientific community in recent years. The application of flexible sensors spans over several fields, including medicine, industrial automation, robotics, security, and human-machine interfacing. In particular, non-invasive health-monitoring devices are expected to play a key role in the improvement of patient life and in reducing costs associated with clinical and biomedical diagnostic procedures. Here, we focus on recent advances achieved in flexible devices applied on the human skin for biomedical and healthcare purposes.


Safdar, M., Janis, J., Sánchez, S., (2016). Microfluidic fuel cells for energy generation Lab on a Chip 16, (15), 2754-2758

Sustainable energy generation is of recent interest due to a growing energy demand across the globe and increasing environmental issues caused by conventional non-renewable means of power generation. In the context of microsystems, portable electronics and lab-on-a-chip based (bio)chemical sensors would essentially require fully integrated, reliable means of power generation. Microfluidic-based fuel cells can offer unique advantages compared to conventional fuel cells such as high surface area-to-volume ratio, ease of integration, cost effectiveness and portability. Here, we summarize recent developments which utilize the potential of microfluidic devices for energy generation.


Patino, T., Mestre, R., Sánchez, S., (2016). Miniaturized soft bio-hybrid robotics: a step forward into healthcare applications Lab on a Chip 16, (19), 3626-3630

Soft robotics is an emerging discipline that employs soft flexible materials such as fluids, gels and elastomers in order to enhance the use of robotics in healthcare applications. Compared to their rigid counterparts, soft robotic systems have flexible and rheological properties that are closely related to biological systems, thus allowing the development of adaptive and flexible interactions with complex dynamic environments. With new technologies arising in bioengineering, the integration of living cells into soft robotic systems offers the possibility of accomplishing multiple complex functions such as sensing and actuating upon external stimuli. These emerging bio-hybrid systems are showing promising outcomes and opening up new avenues in the field of soft robotics for applications in healthcare and other fields.


Caballero, D., Katuri, J., Samitier, J., Sánchez, S., (2016). Motion in microfluidic ratchets Lab on a Chip 16, (23), 4477-4481

The ubiquitous random motion of mesoscopic active particles, such as cells, can be “rectified” or directed by embedding the particles in systems containing local and periodic asymmetric cues. Incorporated on lab-on-a-chip devices, these microratchet-like structures can be used to self-propel fluids, transport particles, and direct cell motion in the absence of external power sources. In this Focus article we discuss recent advances in the use of ratchet-like geometries in microfluidics which could open new avenues in biomedicine for applications in diagnosis, cancer biology, and bioengineering.


Romeo, A., Leung, T. S., Sánchez, S., (2016). Smart biosensors for multiplexed and fully integrated point-of-care diagnostics Lab on a Chip 16, (11), 1957-1961

Point-of-care diagnostics (PoC) and personalised medicine are highly valuable for the improvement of world health. Smartphone PoC platforms which precisely diagnose diseases and track their development through the detection of several bioanalytes represent one of the newest and most exciting advancements towards mass-screening applications. Here we focus on recent advances in both multiplexed and smartphone integrated PoC sensors.


Stanton, Morgan M., Simmchen, Juliane, Ma, Xing, Miguel-López, Albert, Sánchez, Samuel, (2016). Biohybrid Janus motors driven by Escherichia coli Advanced Materials Interfaces 3, (2), 1500505

There has been a significant interest in the development of microswimmers for medical drug and cargo delivery, but the majority of current micromotors rely on toxic fuel sources and materials in their design making them irrelevant for biomedical applications. Bacteria represent an excellent motor alternative, as they are powered using their surrounding biological fluids. For a motile, biohybrid swimmer, Escherichia coli (E. coli) are integrated onto metal capped, polystyrene (PS) Janus particles. Fabrication of the biohybrid is rapid and simple for a microswimmer capable of magnetic guidance and ferrying an anticancer agent. Cell adhesion is regulated as E. coli adheres only to the particle's metal caps allowing the PS surface to be utilized for drug attachment, creating a multifunctional system. E. coli adhesion is investigated on multiple metal caps (Pt, Fe, Ti, or Au) and displays a strong preference to attach to Pt surfaces over other metals. Surface hydrophobicity and surface charge are examined to interpret the cell specific adhesion on the Janus particles. The dual capability of the biohybrid to have guided cell adhesion and localized drug attachment allows the swimmer to have multiple applications for biomedical microswimmers, future bacteria-interface systems, and micro-biorobots.

Keywords: Bacteria adhesion, Biohybrids, Escherichia coli, Janus particles, Microswimmers


Ma, X., Jannasch, A., Albrecht, U. R., Hahn, K., Miguel-López, A., Schäffer, E., Sánchez, S., (2015). Enzyme-powered hollow mesoporous Janus nanomotors Nano Letters 15, (10), 7043-7050

The development of synthetic nanomotors for technological applications in particular for life science and nanomedicine is a key focus of current basic research. However, it has been challenging to make active nanosystems based on biocompatible materials consuming nontoxic fuels for providing self-propulsion. Here, we fabricate self-propelled Janus nanomotors based on hollow mesoporous silica nanoparticles (HMSNPs), which are powered by biocatalytic reactions of three different enzymes: catalase, urease, and glucose oxidase (GOx). The active motion is characterized by a mean-square displacement (MSD) analysis of optical video recordings and confirmed by dynamic light scattering (DLS) measurements. We found that the apparent diffusion coefficient was enhanced by up to 83%. In addition, using optical tweezers, we directly measured a holding force of 64 ± 16 fN, which was necessary to counteract the effective self-propulsion force generated by a single nanomotor. The successful demonstration of biocompatible enzyme-powered active nanomotors using biologically benign fuels has a great potential for future biomedical applications.

Keywords: Enzyme, Hollow mesoporous silica nanoparticles, Hybrid motors, Janus particles, Nanomotors, Optical tweezers


Ma, X., Hahn, K., Sánchez, S., (2015). Catalytic mesoporous janus nanomotors for active cargo delivery Journal of the American Chemical Society 137, (15), 4976-4979

We report on the synergy between catalytic propulsion and mesoporous silica nanoparticles (MSNPs) for the design of Janus nanomotors as active cargo delivery systems with sizes <100 nm (40, 65, and 90 nm). The Janus asymmetry of the nanomotors is given by electron beam (e-beam) deposition of a very thin platinum (2 nm) layer on MSNPs. The chemically powered Janus nanomotors present active diffusion at low H2O2 fuel concentration (i.e., <3 wt %). Their apparent diffusion coefficient is enhanced up to 100% compared to their Brownian motion. Due to their mesoporous architecture and small dimensions, they can load cargo molecules in large quantity and serve as active nanocarriers for directed cargo delivery on a chip.


Sánchez, S., Soler, L., Katuri, J., (2015). Chemically powered micro- and nanomotors Angewandte Chemie - International Edition 54, (4), 1414-1444

Chemically powered micro- and nanomotors are small devices that are self-propelled by catalytic reactions in fluids. Taking inspiration from biomotors, scientists are aiming to find the best architecture for self-propulsion, understand the mechanisms of motion, and develop accurate control over the motion. Remotely guided nanomotors can transport cargo to desired targets, drill into biomaterials, sense their environment, mix or pump fluids, and clean polluted water. This Review summarizes the major advances in the growing field of catalytic nanomotors, which started ten years ago.

Keywords: Catalysis, Micromotors, Nanomotors, Robots, Self-propulsion


Ma, X., Katuri, J., Zeng, Y., Zhao, Y., Sánchez, S., (2015). Surface conductive graphene-wrapped micromotors exhibiting enhanced motion Small 11, (38), 5023–5027

Surface-conductive Janus spherical motors are fabricated by wrapping silica particles with reduced graphene oxide capped with a thin Pt layer. These motors exhibit a 100% enhanced velocity as compared to standard SiO2–Pt motors. Furthermore, the versatility of graphene may open up possibilities for a diverse range of applications from active drug delivery systems to water remediation.

Keywords: Enhanced speed, Graphene wrapping, Janus micromotors, Janus particles, Micromotors, Surface conduction


Choudhury, Udit, Soler, Lluis, Gibbs, John, Sánchez, Samuel, Fischer, Peer, (2015). Surface roughness-induced speed increase for active Janus micromotors Chemical Communications 51, 8660-8663

We demonstrate a simple physical fabrication method to obtain self-propelled active Janus microparticles with rough catalytic platinum surfaces that show a four-fold increase in their propulsion speed compared to conventional Janus particles coated with a smooth Pt layer.


Stanton, M. M., Trichet-Paredes, C., Sánchez, S., (2015). Applications of three-dimensional (3D) printing for microswimmers and bio-hybrid robotics Lab on a Chip 15, (7), 1634-1637

This article will focus on recent reports that have applied three-dimensional (3D) printing for designing millimeter to micrometer architecture for robotic motility. The utilization of 3D printing has rapidly grown in applications for medical prosthetics and scaffolds for organs and tissue, but more recently has been implemented for designing mobile robotics. With an increase in the demand for devices to perform in fragile and confined biological environments, it is crucial to develop new miniaturized, biocompatible 3D systems. Fabrication of materials at different scales with different properties makes 3D printing an ideal system for creating frameworks for small-scale robotics. 3D printing has been applied for the design of externally powered, artificial microswimmers and studying their locomotive capabilities in different fluids. Printed materials have also been incorporated with motile cells for bio-hybrid robots capable of functioning by cell contraction and swimming. These 3D devices offer new methods of robotic motility for biomedical applications requiring miniature structures. Traditional 3D printing methods, where a structure is fabricated in an additive process from a digital design, and non-traditional 3D printing methods, such as lithography and molding, will be discussed.


Stanton, M. M., Samitier, J., Sánchez, S., (2015). Bioprinting of 3D hydrogels Lab on a Chip 15, (15), 3111-3115

Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models.


Seo, K. D., Kim, D. S., Sánchez, S., (2015). Fabrication and applications of complex-shaped microparticles via microfluidics Lab on a Chip 15, (18), 3622-3626

Complex-shaped microparticles (MPs) have attracted extensive interest in a myriad of scientific and engineering fields in recent years for their distinct morphology and capability in combining different functions within a single particle. Microfluidic techniques offer an intriguing method for fabricating MPs with excellent monodispersity and complex morphology in parallel while controlling their number and size precisely and independently. To date, there are two notable microfluidics approaches for the synthesis of complex-shaped MPs, namely droplet based, and flow-lithography based microfluidics approaches. It is undoubted that the application of complex-shaped MPs via microfluidic fabrication will hold great promise in a variety of fields including microfabrication, analytical chemistry and biomedicine.


Parmar, Jemish, Jang, Seungwook, Soler, Lluis, Kim, Dong-Pyo, Sánchez, Samuel, (2015). Nano-photocatalysts in microfluidics, energy conversion and environmental applications Lab on a Chip 15, 2352-2356

Extensive studies have been carried out on photocatalytic materials in recent years as photocatalytic reactions offer a promising solution for solar energy conversion and environmental remediation. Currently available commercial photocatalysts still lack efficiency and thus are economically not viable for replacing traditional sources of energy. This article focuses on recent developments in novel nano-photocatalyst materials to enhance photocatalytic activity. Recent reports on optofluidic systems, new synthesis of photocatalytic composite materials and motile photocatalysts are discussed in this article.


Wang, Lei, Sánchez, Samuel, (2015). Self-assembly via microfluidics Lab on a Chip 15, (23), 4383-4386

The self-assembly of amphiphilic building blocks has attracted extensive interest in myriad fields in recent years, due to their great potential in the nanoscale design of functional hybrid materials. Microfluidic techniques provide an intriguing method to control kinetic aspects of the self-assembly of molecular amphiphiles by the facile adjustment of the hydrodynamics of the fluids. Up to now, there have been several reports about one-step direct self-assembly of different building blocks with versatile and multi-shape products without templates, which demonstrated the advantages of microfluidics. These assemblies with different morphologies have great applications in various areas such as cancer therapy, micromotor fabrication, and controlled drug delivery.


Arayanarakool, Rerngchai, Meyer, Anne K., Helbig, Linda, Sánchez, Samuel, Schmidt, Oliver G., (2015). Tailoring three-dimensional architectures by rolled-up nanotechnology for mimicking microvasculatures Lab on a Chip 15, 2981-2989

Artificial microvasculature, particularly as part of the blood-brain barrier, has a high benefit for pharmacological drug discovery and uptake regulation. We demonstrate the fabrication of tubular structures with patterns of holes, which are capable of mimicking microvasculatures. By using photolithography, the dimensions of the cylindrical scaffolds can be precisely tuned as well as the alignment and size of holes. Overlapping holes can be tailored to create diverse three-dimensional configurations, for example, periodic nanoscaled apertures. The porous tubes, which can be made from diverse materials for differential functionalization, are biocompatible and can be modified to be biodegradable in the culture medium. As a proof of concept, endothelial cells (ECs) as well as astrocytes were cultured on these scaffolds. They form monolayers along the scaffolds, are guided by the array of holes and express tight junctions. Nanoscaled filaments of cells on these scaffolds were visualized by scanning electron microscopy (SEM). This work provides the basic concept mainly for an in vitro model of microvasculature which could also be possibly implanted in vivo due to its biodegradability.


Mendes, Rafael Gregorio, Koch, Britta, Bachmatiuk, Alicja, Ma, Xing, Sánchez, Samuel, Damm, Christine, Schmidt, Oliver G., Gemming, Thomas, Eckert, Jurgen, Rummeli, Mark H., (2015). A size dependent evaluation of the cytotoxicity and uptake of nanographene oxide Journal of Materials Chemistry B 3, (12), 2522-2529

Graphene oxide (GO) has attracted great interest due to its extraordinary potential for biomedical application. Although it is clear that the naturally occurring morphology of biological structures is crucial to their precise interactions and correct functioning, the geometrical aspects of nanoparticles are often ignored in the design of nanoparticles for biological applications. A few in vitro and in vivo studies have evaluated the cytotoxicity and biodistribution of GO, however very little is known about the influence of flake size and cytotoxicity. Herein, we aim at presenting an initial cytotoxicity evaluation of different nano-sized GO flakes for two different cell lines (HeLa (Kyoto) and macrophage (J7742)) when they are exposed to samples containing different sized nanographene oxide (NGO) flakes (mean diameter of 89 and 277 nm). The obtained data suggests that the larger NGO flakes reduce cell viability as compared to smaller flakes. In addition, the viability reduction correlates with the time and the concentration of the NGO nanoparticles to which the cells are exposed. Uptake studies were also conducted and the data suggests that both cell lines internalize the GO nanoparticles during the incubation periods studied.


Paxton, W., Sánchez, S., Nitta, T., (2015). Guest editorial: Special issue micro- and nanomachines IEEE Transactions on Nanobioscience 14, (3), 258-259

The articles in this special section focus on the technologies and applications supported by micro- and nanomachines. The world of artificial micro- and nanomachines has greatly expanded over the last few years to include a range of disciplines from chemistry, physics, biology, to micro/nanoengineering, robotics, and theoretical physics. The dream of engineering nanomachines involves fabricating devices that mimic the mechanical action of biological motors that operate over multiple length scales: from molecular-scale enzymes and motors such as kinesins to the micro-scale biomachinery responsible for the motility of tiny organisms such as the flagella motors of E. coli. However, the design and fabrication of artificial nano- and micromachines with comparable performance as their biological counterparts is not a straightforward task. It requires a detailed understanding of the basic principles of the operation of biomotors and mechanisms that couple the dissipation of energy to mechanical motion. Moreover, micro engineering and microfabrication knowledge is required in order to design efficient, small and even smart micro- and nanomachines.


Seo, K. D., Kwak, B. K., Sánchez, S., Kim, D. S., (2015). Microfluidic-assisted fabrication of flexible and location traceable organo-motor IEEE Transactions on Nanobioscience 14, (3), 298-304

In this paper, we fabricate a flexible and location traceable micromotor, called organo-motor, assisted by microfluidic devices and with high throughput. The organo-motors are composed of organic hydrogel material, poly (ethylene glycol) diacrylate (PEGDA), which can provide the flexibility of their structure. For spatial and temporal traceability of the organo-motors under magnetic resonance imaging (MRI), superparamagnetic iron oxide nanoparticles (SPION; Fe3O4) were incorporated into the PEGDA microhydrogels. Furthermore, a thin layer of platinum (Pt) was deposited onto one side of the SPION-PEGDA microhydrogels providing geometrical asymmetry and catalytic propulsion in aqueous fluids containing hydrogen peroxide solution, H2O2. Furthermore, the motion of the organo-motor was controlled by a small external magnet enabled by the presence of SPION in the motor architecture.

Keywords: Flexible, Hydrogel, Magnetic resonance imaging, Microfluidics, Micromotor, Microparticle, Organo-motor, Poly (ethylene glycol) diacrylate, Self-propulsion, Superparamagnetic iron oxide nanoparticles


Khalil, I. S. M., Magdanz, V., Sánchez, S., Schmidt, O. G., Misra, S., (2015). Precise localization and control of catalytic janus micromotors using weak magnetic fields International Journal of Advanced Robotic Systems 12, (2), 1-7

We experimentally demonstrate the precise localization of spherical Pt-Silica Janus micromotors (diameter 5 μm) under the influence of controlled magnetic fields. First, we control the motion of the Janus micromotors in two-dimensional (2D) space. The control system achieves precise localization within an average region-of-convergence of 7 μm. Second, we show that these micromotors provide sufficient propulsion force, allowing them to overcome drag and gravitational forces and move both downwards and upwards. This propulsion is studied by moving the micromotors in three-dimensional (3D) space. The micromotors move downwards and upwards at average speeds of 19.1 μm/s and 9.8 μm/s, respectively. Moreover, our closed-loop control system achieves localization in 3D space within an average region-of-convergence of 6.3 μm in diameter. The precise motion control and localization of the Janus micromotors in 2D and 3D spaces provides broad possibilities for nanotechnology applications.

Keywords: 3D space, Localization, Magnetic control, Micromotors, Self-propulsion


Comments are closed