Microscopy is a fundamental tool in biological research. However, conventional microscopes require manual operation and depend on user and equipment availability, limiting their suitability for continuous observation. Moreover, their size and complexity make them impractical for in situ experimentation. In this work, we present a novel, compact, affordable, and portable microscope that enables continuous in situ monitoring by being placed directly on biological samples. This chip-sized lensless holographic microscope (CLHM) is specifically designed to overcome the limitations of traditional microscopy. The device consists solely of an ultra-compact, state-of-the-art micro-LED display and a CMOS sensor, all enclosed within a 3D-printed housing. This unique light source enables a size that is markedly smaller than any comparable technology, allowing a resolution of 2.19 mu m within a 7 mm distance between the light source and the camera. This paper demonstrates the CLHM's versatility by monitoring in vitro models and performing whole-organism morphological analyses of small specimens. These experiments underscore its potential as an on-platform sensing device for continuous, in situ biological monitoring across diverse models.
Different mechanisms are triggered when tissue is exposed to a biomaterial. The success of the biomaterial targeted process, like the release of chemicals, promoted angiogenesis, tissue regeneration, etc. depends on its integration in the tissue [1]. Studying this interaction in vivo requires the ability to image simultaneously deep immersed proteins and biomaterials with high resolution and low damage. Several methods offer solutions but only multiphoton microscopy (MM) has the ability to image with high resolution deep inside the sample. Why is not MM more extensively applied as a platform for investigating biomaterial integration in vivo? The high cost of the typical source for multiphoton microscopy is a clear limitation. Furthermore, imaging several channels simultaneously becomes out of reach for most of the labs.
Cell function depends on tissue rigidity, which cells probe by applying and transmitting forces to their extracellular matrix, and then transducing them into biochemical signals. Here we show that in response to matrix rigidity and density, force transmission and transduction are explained by the mechanical properties of the actin-talin-integrin-fibronectin clutch. We demonstrate that force transmission is regulated by a dynamic clutch mechanism, which unveils its fundamental biphasic force/rigidity relationship on talin depletion. Force transduction is triggered by talin unfolding above a stiffness threshold. Below this threshold, integrins unbind and release force before talin can unfold. Above the threshold, talin unfolds and binds to vinculin, leading to adhesion growth and YAP nuclear translocation. Matrix density, myosin contractility, integrin ligation and talin mechanical stability differently and nonlinearly regulate both force transmission and the transduction threshold. In all cases, coupling of talin unfolding dynamics to a theoretical clutch model quantitatively predicts cell response.
Cookies are important to you: they influence your browsing experience, help us protect your privacy, and allow us to process the requests you make through the website. We use our own and third-party cookies to analyze our services and show you advertising related to your preferences, based on a profile created from your browsing habits. You can “Accept” or “Reject” non-essential cookies, as well as configure your preferences by clicking “Configure Cookies.” For more information, please consult our Cookie Policy.
Functional
Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes.The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.